Tn is a unique translational biomarker in cardiology whose potential has not been diminished in the new era of high sensitive assays. cTns can be valuable markers in cardiac diseases as well as in infectious diseases and respiratory diseases. Furthermore, the role of cTns is growing in the routine evaluation of cardioxicity and in determining the efficacy/safety ratio of novel cardioprotective strategies in clinical settings.
View Article and Find Full Text PDFDexrazoxane (DEX) is a clinically available cardioprotectant that reduces the toxicity induced by anthracycline (ANT) anticancer drugs; however, DEX is seldom used and its action is poorly understood. Inorganic nitrate/nitrite has shown promising results in myocardial ischemia-reperfusion injury and recently in acute high-dose ANT cardiotoxicity. However, the utility of this approach for overcoming clinically more relevant chronic forms of cardiotoxicity remains elusive.
View Article and Find Full Text PDFBackground: Cardiac troponins (cTns) seem to be more sensitive for the detection of anthracycline cardiotoxicity than the currently recommended method of monitoring LV systolic function. However, the optimal timing of blood sampling remains unknown. Hence, the aims of the present study were to determine the precise diagnostic window for cTns during the development of chronic anthracycline cardiotoxicity and to evaluate their predictive value.
View Article and Find Full Text PDFChronic anthracycline cardiotoxicity is a serious clinical issue with well characterized functional and histopathological hallmarks. However, molecular determinants of the toxic damage and associated myocardial remodeling remain to be established. Furthermore, details on the different propensity of the left and right ventricle (LV and RV, respectively) to the cardiotoxicity development are unknown.
View Article and Find Full Text PDFDespite incomplete understanding to its mechanism of action, dexrazoxane (DEX) is still the only clearly effective cardioprotectant against chronic anthracycline (ANT) cardiotoxicity. However, its clinical use is currently restricted to patients exceeding significant ANT cumulative dose (300mg/m(2)), although each ANT cycle may induce certain potentially irreversible myocardial damage. Therefore, the aim of this study was to compare early and delayed DEX intervention against chronic ANT cardiotoxicity and study the molecular events involved.
View Article and Find Full Text PDFAnthracycline anticancer drugs (e.g., doxorubicin or daunorubicin) can induce chronic cardiotoxicity and heart failure (HF), both of which are believed to be based on oxidative injury and mitochondrial damage.
View Article and Find Full Text PDFCan J Physiol Pharmacol
September 2012
Dexrazoxane (DEX), an inhibitor of topoisomerase II and intracellular iron chelator, is believed to reduce the formation of reactive oxygen species (ROS) and protects the heart from the toxicity of anthracycline antineoplastics. As ROS also play a role in the pathogenesis of cardiac ischaemia/reperfusion (I/R) injury, the aim was to find out whether DEX can improve cardiac ischaemic tolerance. DEX in a dose of 50, 150, or 450 mg·(kg body mass)(-1) was administered intravenously to rats 60 min before ischaemia.
View Article and Find Full Text PDFAnthracyclines are one of the most effective anticancer drugs ever developed, but their clinical use has been hampered by the risk of severe cardiotoxicity. In this study, we investigated whether rabbits exposed to a different cumulative dose of anthracycline suffer from immunohistochemically detectable vascular toxicity and endothelial dysfunction. Daunorubicin (3 mg/kg, i.
View Article and Find Full Text PDFChronic anthracycline cardiotoxicity is a feared complication of cancer chemotherapy. However, despite several decades of primarily hypothesis-driven research, the molecular basis of this phenomenon remains poorly understood. The aim of this study was to obtain integrative molecular insights into chronic anthracycline cardiotoxicity and the resulting heart failure.
View Article and Find Full Text PDFThe clinical usefulness of anthracycline antineoplastic drugs is limited by their cardiotoxicity. Its mechanisms have not been fully understood, although the induction of oxidative stress is widely believed to play the principal role. Glutathione is the dominant cellular antioxidant, while glutathione peroxidase (GPx) together with glutathione reductase (GR) constitutes the major enzymatic system protecting the cardiac cells from oxidative damage.
View Article and Find Full Text PDFThe matrix metalloproteinases (MMPs) play a key role during cardiac remodeling. The aim of the study was to investigate the changes in collagenous proteins and MMPs in the model of non-ischemic, anthracycline-induced chronic cardiomyopathy in rabbits using both biochemical and histological approaches. The study was carried out in three groups of Chinchilla male rabbits: 1) daunorubicin (3 mg/kg, once weekly for 10 weeks), 2) control (saline in the same schedule), 3) daunorubicin with the cardioprotectant dexrazoxane (60 mg/kg, before each daunorubicin).
View Article and Find Full Text PDFBackground: Dexrazoxane (DEX, ICRF-187) is the only clinically approved cardioprotectant against anthracycline cardiotoxicity. It has been traditionally postulated to undergo hydrolysis to iron-chelating agent ADR-925 and to prevent anthracycline-induced oxidative stress, progressive cardiomyocyte degeneration and subsequent non-programmed cell death. However, the additional capability of DEX to protect cardiomyocytes from apoptosis has remained unsubstantiated under clinically relevant in vivo conditions.
View Article and Find Full Text PDFThe risk of cardiotoxicity is the most serious drawback to the clinical usefulness of anthracycline antineoplastic antibiotics, which include doxorubicin (adriamycin), daunorubicin or epirubicin. Nevertheless, these compounds remain among the most widely used anticancer drugs. The molecular pathogenesis of anthracycline cardiotoxicity remains highly controversial, although the oxidative stress-based hypothesis involving intramyocardial production of reactive oxygen species (ROS) has gained the widest acceptance.
View Article and Find Full Text PDFBackground And Purpose: The clinical utility of anthracycline antineoplastic drugs is limited by the risk of cardiotoxicity, which has been traditionally attributed to iron-mediated production of reactive oxygen species (ROS).
Experimental Approach: The aims of this study were to examine the strongly lipophilic iron chelator, salicylaldehyde isonicotinoyl hydrazone (SIH), for its ability to protect rat isolated cardiomyocytes against the toxicity of daunorubicin (DAU) and to investigate the effects of SIH on DAU-induced inhibition of proliferation in a leukaemic cell line. Cell toxicity was measured by release of lactate dehydrogenase and staining with Hoechst 33342 or propidium iodide and lipid peroxidation by malonaldehyde formation.
Anthracycline cardiotoxicity ranks among the most severe complications of cancer chemotherapy. Although its pathogenesis is only incompletely understood, "reactive oxygen species (ROS) and iron" hypothesis has gained the widest acceptance. Besides dexrazoxane, novel oral iron chelator deferiprone has been recently reported to afford significant cardioprotection in both in vitro and ex vivo conditions.
View Article and Find Full Text PDFThe risk of cardiotoxicity is the main drawback of anthracycline antibiotics. However, these drugs remain among the most effective and frequently used anti cancer drugs. In this study we aimed to assess the cardioprotective effects of aroylhydrazone iron (FE) chelators: pyridoxal isonicotinoyl hydrazone (PIH) and its two analogs: salicyladehyde isonicotinoyl hydrazone (SIH) and pyridoxal o-chlorbenzoyl hydrazone (o-108).
View Article and Find Full Text PDFActa Medica (Hradec Kralove)
February 2008
Matrix metalloproteinases (MMPs), activated by oxidative stress, play a key role during cardiac remodeling. In the present study we aimed to assess the role of MMPs in experimental cardiomyopathy induced by repeated 10-week administration of daunorubicin (3 mg/kg i.v.
View Article and Find Full Text PDFThe use of anthracycline anticancer drugs is limited by a cumulative, dose-dependent cardiac toxicity. Iron chelation has long been considered as a promising strategy to limit this unfavorable side effect, either by restoring the disturbed cellular iron homeostasis or by removing redox-active iron, which may promote anthracycline-induced oxidative stress. Aroylhydrazone lipophilic iron chelators have shown promising results in the rabbit model of daunorubicin-induced cardiomyopathy as well as in cellular models.
View Article and Find Full Text PDFCardiac troponin T (cTnT) and troponin I (cTnI) are becoming acknowledged as useful biochemical markers of drug-induced cardiotoxicity. In this study we examined the release kinetics of cTnT and cTnI using an in vitro model of isolated rat neonatal ventricular cardiomyocytes (NVCM, 72h treatment with 0.1-3microM of daunorubicin) and compared it with data from a rabbit model of chronic anthracycline-induced cardiomyopathy in vivo (3mg/kg of daunorubicin weekly, 10 weeks).
View Article and Find Full Text PDFThe aim of this study was to analyze the ECG time intervals in the course of the development of chronic anthracycline cardiomyopathy in rabbits. Furthermore, this approach was employed to study the effects of a model cardioprotective drug (dexrazoxane) and two novel iron chelating compounds--salicylaldehyde isonicotinoyl hydrazone (SIH) and pyridoxal 2-chlorobenzoyl hydrazone (o-108). Repeated daunorubicin administration induced a significant and progressive prolongation of the QRS complex commencing with the eighth week of administration.
View Article and Find Full Text PDFPyridoxal-derived aroylhydrazone iron chelators have been previously shown as effective cardioprotectants against chronic anthracycline cardiotoxicity. In this study we focused on a novel salicylaldehyde analogue (salicylaldehyde isonicotinoyl hydrazone, SIH), which has been recently demonstrated to possess marked and dose-dependent protective effects against oxidative injury of cardiomyocytes. Therefore, in the present study the cardioprotective potential of SIH against daunorubicin (DAU) cardiotoxicity was assessed in vitro (isolated rat ventricular cardiomyocytes; DAU 10 microM, 48 h exposure) as well as in vivo (chronic DAU-induced cardiomyopathy in rabbits; DAU 3mg/kg, i.
View Article and Find Full Text PDFAnthracycline cardiotoxicity represents a serious risk of anticancer chemotherapy. The aim of the present pilot study was to compare the potential of both the left ventricular (LV) filling pattern evaluation and cardiac troponin T (cTnT) plasma levels determination for the early detection of daunorubicin-induced cardiotoxicity in rabbits. The echocardiographic measurements of transmitral LV inflow as well as cTnT determinations were performed weekly for 10 weeks in daunorubicin (3 mg/kg weekly) and control groups (n=5, each).
View Article and Find Full Text PDFIron chelation is the only pharmacological intervention against anthracycline cardiotoxicity whose effectiveness has been well documented both experimentally and clinically. In this study, we aimed to assess whether pyridoxal 2-chlorobenzoyl hydrazone (o-108, a strong iron chelator) can provide effective protection against daunorubicin (DAU)-induced chronic cardiotoxicity in rabbits. First, using the HL-60 leukemic cell line, it was shown that o-108 has no potential to blunt the antiproliferative efficacy of DAU.
View Article and Find Full Text PDFJ Chromatogr B Analyt Technol Biomed Life Sci
July 2006
A high performance liquid chromatographic method for the determination of a biocompatible iron chelator, pyridoxal 2-chlorobenzoyl hydrazone (o-108), in rabbit plasma was developed and validated. The separation was achieved on a C18 column with the mobile phase composed of a mixture of 0.01 M phosphate buffer (pH 6) with the addition of EDTA (2 mM), methanol and acetonitrile (42:24:14; v/v/v).
View Article and Find Full Text PDF