Background: Microbrachytherapy enables high local tumor doses sparing surrounding tissues by intratumoral injection of radioactive holmium-166 microspheres (Ho-MS). Magnetic resonance imaging (MRI) cannot properly detect high local Ho-MS concentrations and single-photon emission computed tomography has insufficient resolution. Computed tomography (CT) is quicker and cheaper with high resolution and previously enabled Ho quantification.
View Article and Find Full Text PDFBackground: Transarterial radioembolization (TARE) is a treatment modality for liver tumors during which radioactive microspheres are injected into the hepatic arterial system. These microspheres distribute throughout the liver as a result of the blood flow until they are trapped in the arterioles because of their size. Holmium-166 ( Ho)-loaded microspheres used for TARE can be visualized and quantified with MRI, as holmium is a paramagnetic metal and locally increases the transverse relaxation rate .
View Article and Find Full Text PDFUnlabelled: (166)Ho-poly(l-lactic acid) microspheres allow for quantitative imaging with MR imaging or SPECT for microsphere biodistribution assessment after radioembolization. The purpose of this study was to evaluate SPECT- and MR imaging-based dosimetry in the first patients treated with (166)Ho radioembolization.
Methods: Fifteen patients with unresectable, chemorefractory liver metastases of any origin were enrolled in this phase 1 study and were treated with (166)Ho radioembolization according to a dose escalation protocol (20-80 Gy).
Objectives: To demonstrate the feasibility of MRI-based assessment of the intrahepatic Ho-PLLA-MS biodistribution after radioembolisation in order to estimate the absorbed radiation dose.
Methods: Fifteen patients were treated with holmium-166 ((166)Ho) poly(L-lactic acid)-loaded microspheres (Ho-PLLA-MS, mean 484 mg; range 408-593 mg) in a phase I study. Multi-echo gradient-echo MR images were acquired from which R (2) maps were constructed.
In cancer therapy, a promising treatment option to accomplish a high tumor-to-normal-tissue ratio is endovascular intervention with microsized particles, such as embolotherapy. In this study, alginate microspheres (ams) were prepared with the JetCutter technique, which is based on cutting a sodium alginate solution jet stream into small droplets of uniform size which are then cross-linked with different lanthanides or iron-III, resulting in microspheres of a predefined size which can be visualized by magnetic resonance imaging (MRI). The microspheres were investigated for their size and morphology (light microscopy and scanning electron microscopy analysis), cation content and MRI properties.
View Article and Find Full Text PDFLack of spatial accuracy is a recognized problem in magnetic resonance imaging (MRI) which severely detracts from its value as a stand-alone modality for applications that put high demands on geometric fidelity, such as radiotherapy treatment planning and stereotactic neurosurgery. In this paper, we illustrate the potential and discuss the limitations of spectroscopic imaging as a tool for generating purely phase-encoded MR images and parameter maps that preserve the geometry of an object and allow localization of object features in world coordinates. Experiments were done on a clinical system with standard facilities for imaging and spectroscopy.
View Article and Find Full Text PDFPurpose: To investigate the potential of magnetic resonance imaging (MRI) for accurate assessment of the three-dimensional (166)Ho activity distribution to estimate radiation-absorbed dose distributions in (166)Ho-loaded poly (L-lactic acid) microsphere ((166)Ho-PLLA-MS) liver radioembolization.
Methods And Materials: MRI, computed tomography (CT), and single photon emission CT (SPECT) experiments were conducted on an anthropomorphic gel phantom with tumor-simulating gel samples and on an excised human tumor-bearing liver, both containing known amounts of (166)Ho-PLLA-MS. Three-dimensional radiation-absorbed dose distributions were estimated at the voxel level by convolving the (166)Ho activity distribution, derived from quantitative MRI data, with a (166)Ho dose point-kernel generated by MCNP (Monte Carlo N-Particle transport code) and from Medical Internal Radiation Dose Pamphlet 17.
Purpose: To provide a best estimate of the R 2* value and hence of the local concentration of highly paramagnetic holmium-166 loaded microspheres (HoMS) in voxels for which R 2* cannot be characterized by conventional fitting of multigradient echo (MGE) data because of fast signal decay due to high local concentrations.
Materials And Methods: A postprocessing method, S(0)-fitting, was implemented in a conventional R 2* fitting method that is used for quantification of HoMS. S(0)-fitting incorporates the estimated initial amplitude of the free induction decay (FID) curve, S(0), of neighboring voxels into the fitting procedure for voxels for which the conventional algorithm failed.