Unmet needs in the treatment of chronic otitis media and Eustachian tube dysfunction (ETD) triggered the development of stents for the Eustachian tube (ET). In this study, for the first time, stents were placed in an artificially blocked ET to evaluate stent function. Eight adult female sheep were injected with stabilized hyaluronic acid (HA) on both sides to induce ETD.
View Article and Find Full Text PDFThe Eustachian tube (ET) is a bottleneck when it comes to middle ear (ME) health. If its function is impaired, this can lead to serious consequences for the patient, such as hearing problems or deafness. Therefore, this study investigated a tapered nitinol stent (3-5 mm × 14 mm) for the human ET as a potential new permanent treatment for chronic Eustachian tube dysfunction (ETD) and thus ME ventilation disorders.
View Article and Find Full Text PDFChronic otitis media is often connected to Eustachian tube dysfunction. As successful treatment cannot be guaranteed with the currently available options, the aim is to develop a stent for the Eustachian tube (ET). Over the course of this development, different prototypes were generated and tested in ex vivo experiments.
View Article and Find Full Text PDFAuditory disabilities have a large impact on the human population worldwide. Research into understanding and treating hearing disabilities has increased significantly in recent years. One of the most relevant animal species in this context is the guinea pig, which has to be deafened to study several of the hearing pathologies and develop novel therapies.
View Article and Find Full Text PDFCochlear implants are well established to treat severe hearing impairments. Despite many different approaches to reduce the formation of connective tissue after electrode insertion and to keep electrical impedances low, results are not yet satisfying. Therefore, the aim of the current study was to combine the incorporation of 5% dexamethasone in the silicone body of the electrode array with an additional polymeric coating releasing diclofenac or the immunophilin inhibitor MM284, some anti-inflammatory substances not yet tested in the inner ear.
View Article and Find Full Text PDFBioengineering (Basel)
November 2022
The Eustachian tube (ET) has a key role in the pathogenesis of otitis media. Until now, there has been a lack of meaningful imaging methods to investigate the ET and its surrounding tissue. The aim of the current study was to investigate the possibilities of imaging the ET using Intravascular Ultrasonography (IVUS).
View Article and Find Full Text PDFObjective: Shorter and thinner electrodes were developed for preserving residual hearing after cochlear implantation by minimising trauma. As trauma is regarded as one of the causes of fibrous tissue formation after implantation, and increase in impedance is considered to be connected to fibrous tissue formation, the aim of the current study was to evaluate impedance development after implantation of Hybrid-L electrodes.
Design: Impedance values were retrospectively collected from our clinical database and evaluated for all active contacts and basal, middle and apical contacts separately for up to 10 years.
Audiol Neurootol
January 2023
Introduction: Loss of hair cells and degeneration of spiral ganglion neurons (SGN) lead to severe hearing loss or deafness. The successful use of a cochlear implant (CI) depends among other factors on the number of surviving SGN. Postoperative formation of fibrous tissue around the electrode array causes an increase in electrical impedances at the stimulating contacts.
View Article and Find Full Text PDFOtitis media is often connected to Eustachian tube dysfunction (ETD). Until now, there was no large animal model available for the examination of new treatment methods such as stents for the Eustachian tube (ET). Thus, the aim of the study was to develop a method to reproducibly induce ETD by injection of fillers and without permanent closure of the ET.
View Article and Find Full Text PDFUsing cultures of freshly isolated spiral ganglion cells (SGC) is common to investigate the effect of substances on spiral ganglion neurons (SGN) . As these cultures contain more cell types than just neurons, and it might be beneficial to have cochlear fibroblasts available to further investigate approaches to reduce the growth of fibrous tissue around the electrode array after cochlear implantation, we aimed at the purification of fibroblasts from the spiral ganglion in the current study. Subcultivation of the primary SGC culture removed the neurons from the culture and increased the fibroblast to glial cell ratio in the preparations, which was revealed by staining for vimentin, the S100B-protein, and the 200-kD neurofilament.
View Article and Find Full Text PDFThe extent of dysfunction of the Eustachian tube (ET) is relevant in understanding the pathogenesis of secondary otological diseases such as acute or chronic otitis media. The underlying mechanism of ET dysfunction remains poorly understood except for an apparent genesis such as a nasopharyngeal tumor or cleft palate. To better describe the ET, its functional anatomy, and the biomechanical valve mechanism and subsequent development of diagnostic and interventional tools, a three-dimensional model based on thin-layer histology was created from an ET in this study.
View Article and Find Full Text PDFChronic infections are often connected to biofilm formation. In presence of implants, this can lead to loss of the implant. Systemic or local application of drugs is relatively ineffective in case of biofilm formation.
View Article and Find Full Text PDFDegeneration of neurons, such as the inner ear spiral ganglion neurons (SGN), may be decelerated or even stopped by neurotrophic factor treatment, such as brain-derived neurotrophic factor (BDNF), as well as electrical stimulation (ES). In a clinical setting, drug treatment of the SGN could start directly during implantation of a cochlear implant, whereas electrical stimulation begins days to weeks later. The present study was conducted to determine the effects of consecutive BDNF and ES treatments on SGN density and electrical responsiveness.
View Article and Find Full Text PDFObjectives: Preservation of residual hearing is one of the main goals in present cochlear implantation surgery. Especially for this purpose, smaller and softer electrode carriers were developed that are to be inserted through the round window membrane to minimize trauma. By using these electrodes and insertion technique, residual hearing can be preserved in a large number of patients.
View Article and Find Full Text PDFAn increased number of patients with residual hearing are undergoing cochlear implantation. A subset of these experience delayed hearing loss post-implantation, and the aetiology of this loss is not well understood. Our previous studies suggest that electrical stimulation can induce damage to hair cells in organ of Corti (OC) organotypic cultures.
View Article and Find Full Text PDFEustachian tube (ET) dysfunction is one of the causes for chronic otitis media. To develop new therapies such as stents to facilitate middle ear ventilation, a better knowledge on dimensions and positions of the ET in individual patients is necessary. Cone beam CT scans of 143 patients were retrospectively investigated.
View Article and Find Full Text PDFThe first multiplication sign (.) for unit μC cm¯·phase¯ was not placed, which is part of the author's correction. Furthermore, the unit appears anywhere in the article.
View Article and Find Full Text PDFPatients scheduled for cochlear implantation often retain residual hearing in the low frequencies. Unfortunately, some patients lose their residual hearing following implantation and the reasons for this are not well understood. Evidence suggests that electrotoxicity could be one of the factors responsible for this late adverse effect.
View Article and Find Full Text PDFBackground: Untreated chronic otitis media severely impairs quality of life in affected individuals. Local destruction of the middle ear and subsequent loss of hearing are common sequelae, and currently available treatments provide limited relief. Therefore, the objectives of this study were to evaluate the feasibility of the insertion of a coronary stent from the nasopharynx into the Eustachian tube in-vivo in sheep and to make an initial assessment of its positional stability, tolerance by the animal, and possible tissue reactions.
View Article and Find Full Text PDFDexamethasone (DEX) can reduce fibrous tissue growth as well as loss of residual hearing which may occur after cochlear implantation. Little is known about the effect of local inner ear DEX treatment on the spiral ganglion neurons (SGN), which are the target of the electrical stimulation with a cochlear implant (CI). Three different clinically relevant strategies of DEX-delivery into the inner ear were used.
View Article and Find Full Text PDFHyperbaric oxygen therapy (HBOT) is a noninvasive widely applied treatment that increases the oxygen pressure in tissues. In cochlear implant (CI) research, intracochlear application of neurotrophic factors (NTFs) is able to improve survival of spiral ganglion neurons (SGN) after deafness. Cell-based delivery of NTFs such as brain-derived neurotrophic factor (BDNF) may be realized by cell-coating of the surface of the CI electrode.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
November 2017
In cochlear implant (CI) patients, an increase in electrode impedance due to fibrotic encapsulation is frequently observed. Several attempts have been proposed to reduce fibroblast growth at the electrode contacts, but none proved to be satisfactory so far. Here, a silicone fiber coating of the electrode contacts is presented that provides a complex micro-scale surface topography and increases hydrophobicity to inhibit fibroblast growth and adhesion.
View Article and Find Full Text PDFObjective: To investigate and establish the use of tympanometry in conscious sheep to provide a means of objective assessment of tympanic membrane integrity, middle ear ventilation and functioning of the Eustachian tube (ET).
Design: After conditioning the sheep for four weeks, tympanometric measurements at 226 Hz were carried out weekly for 13 weeks. Before measurements, the external ear canal had been cleaned.
Concurrent hyperbaric oxygen therapy (HBOT) and intratympanic steroid application (ITS) are beneficial as salvage therapy for therapy-refractory sudden sensorineural hearing loss (SSNHL). The findings encourage further research on the treatment of noise-induced and idiopathic SSNHL with concurrent use of HBOT and ITS respecting also patients with long-term or therapy-refractory SSNHL.
View Article and Find Full Text PDF