Publications by authors named "Gerrit Bredeck"

Although desert dust promotes morbidity and mortality, it is exempt from regulations. Its health effects have been related to its inflammatory properties, which can vary between source regions. It remains unclear which constituents cause this variability.

View Article and Find Full Text PDF

Desert dust exposure is associated with adverse respiratory health effects. Desert dust is a complex pollutant mixtures that includes respirable crystalline and amorphous particles, metals, and microbial constituents. Given the health effects of desert dust and its heterogeneity, as yet unidentified harmful biological pathways may be triggered.

View Article and Find Full Text PDF

Background: Epidemiological studies have related desert dust events to increased respiratory morbidity and mortality. Although the Sahara is the largest source of desert dust, Saharan dust (SD) has been barely examined in toxicological studies. Here, we aimed to assess the NLRP3 inflammasome-caspase-1-pathway-dependent pro-inflammatory potency of SD in comparison to crystalline silica (DQ12 quartz) in an advanced air-liquid interface (ALI) co-culture model.

View Article and Find Full Text PDF

Plastic particles in the nanometer range-called nanoplastics-are environmental contaminants with growing public health concern. As plastic particles are present in water, soil, air and food, human exposure intestine and lung is unavoidable, but possible health effects are still to be elucidated. To better understand the Mode of Action of plastic particles, it is key to use experimental models that best reflect human physiology.

View Article and Find Full Text PDF

Desert dust is increasingly recognized as a major air pollutant affecting respiratory health. Since desert dust exposure cannot be regulated, the hazardousness of its components must be understood to enable health risk mitigation strategies. Saharan dust (SD) comprises about half of the global desert dust and contains quartz, a toxic mineral dust that is known to cause severe lung diseases via oxidative stress and activation of the NLRP3 inflammasome-interleukin-1β pathway.

View Article and Find Full Text PDF

Due to the ubiquity of environmental micro- and nanoplastics (MNPs), inhalation and ingestion by humans is very likely, but human health effects remain largely unknown. The NLRP3 inflammasome is a key player of the innate immune system and is involved in responses towards foreign particulate matter and the development of chronic intestinal and respiratory inflammatory diseases. We established -proficient and -deficient THP-1 cells as an alternative in vitro screening tool to assess the potential of MNPs to activate the NLRP3 inflammasome.

View Article and Find Full Text PDF

The increasing use of engineered nanomaterials (ENM) in food has fueled the development of intestinal in vitro models for toxicity testing. However, ENM effects on intestinal mucus have barely been addressed, although its crucial role for intestinal health is evident. We investigated the effects of ENM on mucin expression and aimed to evaluate the suitability of four in vitro models of increasing complexity compared to a mouse model exposed through feed pellets.

View Article and Find Full Text PDF

The uncertainty of potential risks associated with micro- and nanoplastics (MNPs) are of growing public concern. However, the diversity of MNPs in the environment makes a systematic analysis of potential health effects challenging. New tools and approaches are necessary to investigate biological effects of MNPs.

View Article and Find Full Text PDF

Rodent studies on the effects of engineered nanomaterials (ENM) on the gut microbiome have revealed contradictory results. Our aim was to assess the effects of four well-investigated model ENM using a realistic exposure scenario. Two independent feeding studies were performed.

View Article and Find Full Text PDF

With the rising interest in the effects of orally ingested engineered nanomaterials (ENMs), much effort is undertaken to develop and advance intestinal in vitro models. The cytotoxic, proinflammatory, and DNA damaging properties of polyvinylpyrrolidone-capped silver (Ag-PVP) and titanium dioxide (TiO , P25) ENM in four in vitro models of increasing complexity-from proliferating Caco-2 and HT29-MTX-E12 monocultures to long-term transwell triple cultures including THP-1 macrophages to reproduce the human intestine in healthy versus inflamed-like state-are studied. Results are compared against in vivo effects of the same ENM through intestinal tissue analysis from 28-day oral exposure studies in mice.

View Article and Find Full Text PDF

The continuous degradation of plastic waste in the environment leads to the generation of micro- and nanoplastic fragments and particles. Due to the ubiquitous presence of plastic particles in natural habitats as well as in food, beverages and tap water, oral exposure of the human population with plastic particles occurs worldwide. We investigated acute toxicological effects of polystyrene (PS) and polyvinyl chloride (PVC) micro- and nanoparticles in an advanced in vitro triple culture model (Caco-2/HT29-MTX-E12/THP-1) mimicking the healthy and inflamed human intestine to study the effect of inflammatory processes on plastic particle toxicity.

View Article and Find Full Text PDF