Philos Trans A Math Phys Eng Sci
April 2022
In this paper, we present the prototype of an ophthalmoscope that uses structured illumination microscopy (SIM) to enable super-resolved imaging of the human retina, and give first insights into clinical application possibilities. The SIM technique was applied to build a prototype that uses the lens of the human eye as an objective to 'super-resolve' the retina of a living human. In our multidisciplinary collaboration, we have adapted this well-established technique in ophthalmology and successfully imaged a human retina using significantly lower light intensity than a state-of-the-art ophthalmoscope.
View Article and Find Full Text PDFCarbon ion radiation is a promising new form of radiotherapy for cancer, but the central question about the biologic effects of charged particle radiation is yet incompletely understood. Key to this question is the understanding of the interaction of ions with DNA in the cell's nucleus. Induction and repair of DNA lesions including double-strand breaks (DSBs) are decisive for the cell.
View Article and Find Full Text PDFSingle Molecule Localization Microscopy (SMLM) is a recently emerged optical imaging method that was shown to achieve a resolution in the order of tens of nanometers in intact cells. Novel high resolution imaging methods might be crucial for understanding of how the chromatin, a complex of DNA and proteins, is arranged in the eukaryotic cell nucleus. Such an approach utilizing switching of a fluorescent, DNA-binding dye Vybrant® DyeCycle™ Violet has been previously demonstrated by us (Żurek-Biesiada et al.
View Article and Find Full Text PDFDuring meiosis, homologous chromosomes associate to form the synaptonemal complex (SC), a structure essential for fertility. Information about the epigenetic features of chromatin within this structure at the level of superresolution microscopy is largely lacking. We combined single-molecule localization microscopy (SMLM) with quantitative analytical methods to describe the epigenetic landscape of meiotic chromosomes at the pachytene stage in mouse oocytes.
View Article and Find Full Text PDFAccumulation of fat in muscle tissue as intramyocellular lipids (IMCLs) is closely related to the development of insulin resistance and subsequent type 2 diabetes. Most IMCLs organize into lipid droplets (LDs), the fates of which are regulated by lipid droplet coat proteins. Perilipin 5 (PLIN5) is an LD coating protein, which is strongly linked to lipid storage in muscle tissue.
View Article and Find Full Text PDFSeveral approaches have been described to fluorescently label and image DNA and chromatin in situ on the single-molecule level. These superresolution microscopy techniques are based on detecting optically isolated, fluorescently tagged anti-histone antibodies, fluorescently labeled DNA precursor analogs, or fluorescent dyes bound to DNA. Presently they suffer from various drawbacks such as low labeling efficiency or interference with DNA structure.
View Article and Find Full Text PDFPurpose: Autofluorescent (AF) material within drusen has rarely been described and there is little knowledge about origin and formation of these particles. Drusen formation is still a relatively unknown process and analysis of AF inclusions might be important for the understanding of fundamental processes. Here we present a detailed analysis of drusen containing AF material using structured illumination microscopy (SIM), which provides a lateral resolution twice as high as conventional fluorescence microscopy.
View Article and Find Full Text PDFStructured illumination microscopy can achieve super-resolution in fluorescence imaging. The sample is illuminated with periodic light patterns, and a series of images are acquired for different pattern positions, also called phases. From these a super-resolution image can be computed.
View Article and Find Full Text PDFBackground/aims: To characterise single autofluorescent (AF) granules in human retinal pigment epithelium (RPE) cells using structured illumination microscopy (SIM).
Methods: Morphological characteristics and autofluorescence behaviour of lipofuscin (LF) and melanolipofuscin (MLF) granules of macular RPE cells (66-year-old donor) were examined with SIM using three different laser light excitation wavelengths (488, 568 and 647 nm). High-resolution images were reconstructed and exported to Matlab R2009a (The Mathworks Inc, Natick, MA, USA) to determine accurate size and emission intensities of LF and MLF granules.
Sections from human eye tissue were analyzed with Structured Illumination Microscopy (SIM) using a specially designed microscope setup. In this microscope the structured illumination was generated with a Twyman-Green Interferometer. This SIM technique allowed us to acquire light-optical images of autofluorophore distributions in the tissue with previously unmatched optical resolution.
View Article and Find Full Text PDF