CTLA4-Ig/abatacept dampens activation of naive T cells by blocking costimulation via CD28. It is an approved drug for rheumatoid arthritis but failed to deliver efficacy in a number of other autoimmune diseases. One explanation is that activated T cells rely less on CD28 signaling and use alternate coreceptors for effector function.
View Article and Find Full Text PDFMicrovesicles have been shown to mediate varieties of intercellular communication. Work in murine species has shown that lung-derived microvesicles can deliver mRNA, transcription factors, and microRNA to marrow cells and alter their phenotype. The present studies evaluated the capacity of excised human lung cancer cells to change the genetic phenotype of human marrow cells.
View Article and Find Full Text PDFPurpose: Transfer of genetic material from cancer cells to normal cells occurs via microvesicles. Cell specific phenotypes can be induced in normal cells by the transfer of material in microvesicles, leading to genetic changes. We report the identification and expression of prostate specific genes in normal human marrow cells co-cultured with human prostate cancer cells.
View Article and Find Full Text PDFPrimitive marrow lineage-negative rhodamine low and Hoechst low (LRH) stem cells isolated on the basis of quiescence respond to the cytokines thrombopoietin, FLT3L, and steel factor by synchronously progressing through cell cycle. We have now profiled the mRNA expression, as determined by real-time RT-PCR, of 47 hematopoietic or cell cycle-related genes, focusing on the variations in the cell cycle regulators with cycle transit. LRH stem cells, at isolation, showed expression of all interrogated genes, but at relatively low levels.
View Article and Find Full Text PDFPurified long-term multilineage repopulating marrow stem cells have been considered to be homogenous, but functionally these cells are heterogeneous. Many investigators urge clonal studies to define stem cells but, if stem cells are truly heterogeneous, clonal studies can only define heterogeneity. We have determined the colony growth and differentiation of individual lineage negative, rhodamine low, Hoechst low (LRH) stem cells at various times in cytokine culture, corresponding to specific cell cycle stages.
View Article and Find Full Text PDFLong-term engrafting marrow hematopoietic stem cells have been considered to be a quiescent stem cell in G(0). However, there are contradictory reports on this point in the literature, showing marked variability of results over time and between mice. Furthermore, there are circadian rhythms for stem cells and progenitors.
View Article and Find Full Text PDFGreen fluorescent protein (GFP)-labeled marrow cells transplanted into lethally irradiated mice can be detected in the lungs of transplanted mice and have been shown to express lung-specific proteins while lacking the expression of hematopoietic markers. We have studied marrow cells induced to transit the cell cycle by exposure to interleukin-3 (IL-3), IL-6, IL-11, and Steel factor at different times of culture corresponding to different phases of cell cycle. We have found that marrow cells at the G(1)/S interface of the cell cycle have a three-fold increase in cells that assume a nonhematopoietic or pulmonary epithelial cell phenotype and that this increase is no longer seen in late S/G(2).
View Article and Find Full Text PDFEvolving data suggest that marrow hematopoietic stem cells show reversible changes in homing, engraftment, and differentiation phenotype with cell cycle progression. Furthermore, marrow stem cells are a cycling population. Traditional concepts hold that the system is hierarchical, but the information on the lability of phenotype with cycle progression suggests a model in which stem cells are on a reversible continuum.
View Article and Find Full Text PDFNumerous animal studies have demonstrated that adult marrow-derived cells can contribute to the cellular component of the lung. Lung injury is a major variable in this process; however, the mechanism remains unknown. We hypothesize that injured lung is capable of inducing epigenetic modifications of marrow cells, influencing them to assume phenotypic characteristics of lung cells.
View Article and Find Full Text PDFThe phenotype of the hematopoietic stem cell is intrinsically labile and impacted by cell cycle and the effects of tissue injury. In published studies we have shown that there are changes in short- and long-term engraftment, progenitor numbers, gene expression, and differentiation potential with cytokine-induced cell cycle transit. Critical points here are that these changes are reversible and not unidirectional weighing, heavily against a hierarchical model of stem cell regulation.
View Article and Find Full Text PDFObjective: The purpose of this study was to evaluate the technique of stem cell-directed differentiation in the context of cell-cycle position. The hypothesis was that stem cells would have different sensitivities to an identical inductive signal through cell-cycle transit and that this would affect the outcome of its progeny.
Materials And Methods: Differentiation of murine marrow lineage(negative)rhodamine-123(low-)Hoechst-33342(low) (LRH) stem cells was determined at different points in cell cycle under stimulation by thrombopoietin, flt3 ligand, and steel factor.
Objective: Previous studies have demonstrated the production of various types of lung cells from marrow cells under diverse experimental conditions. Our aim was to identify some of the variables that influence conversion in the lung.
Methods: In separate experiments, mice received various doses of total-body irradiation followed by transplantation with whole bone marrow or various subpopulations of marrow cells (Lin(-/+), c-kit(-/+), Sca-1(-/+)) from GFP(+) (C57BL/6-TgN[ACTbEGFP]1Osb) mice.
Hematopoietic stem cells have been felt to exist in a hierarchical structure with a relatively fixed phenotype at each stage of differentiation. Recent studies on the phenotype of the marrow hematopoietic stem cell indicate that it is not a fixed entity, but rather that it fluctuates and shows marked heterogeneity. Past studies have shown that stem cell engraftment characteristics, adhesion protein, and gene expression varies with the phase of the cell cycle.
View Article and Find Full Text PDFCharacterization of a cord blood derived unrestricted somatic stem cell (USSC) with capacity to differentiate into hematopoietic and nonhematopoietic tissues in the absence of cell fusion has highlighted the great potential of stem cell plasticity. A great variety of stem cell types have been defined and even the most pure marrow stem cells are highly heterogeneous. Data suggest that stem cells may exist in a continuum with continually and reversibly changing phenotype.
View Article and Find Full Text PDF