Publications by authors named "Gerome Melaet"

Recent theoretical predictions indicate that functional groups and additives could have a favorable impact on the hydrogen adsorption characteristics of sorbents; however, no definite evidence has been obtained to date and little is known about the impact of such modifications on the thermodynamics of hydrogen uptake and overall capacity. In this work, we investigate the effect of two types of additives on the cryoadsorption of hydrogen to mesoporous silica. First, Lewis and Brønsted acid sites were evaluated by grafting aluminum to the surface of mesoporous silica (MCF-17) and characterizing the resulting silicate materials' surface area and the concentration of Brønsted and Lewis acid sites created.

View Article and Find Full Text PDF

The Fischer-Tropsch process, or the catalytic hydrogenation of carbon monoxide (CO), produces long chain hydrocarbons and offers an alternative to the use of crude oil for chemical feedstocks. The observed size dependence of cobalt (Co) catalysts for the Fischer-Tropsch reaction was studied with colloidally prepared Co nanoparticles and a chemical transient kinetics reactor capable of measurements under non-steady-state conditions. Co nanoparticles of 4.

View Article and Find Full Text PDF

Pt, Rh, and Pd nanoclusters stabilized by PAMAM dendrimer are used for the first time in a gas flow reactor at high temperature (150-250 °C). Pt nanoclusters show a very high activity for the hydrogenation of the methylcyclopentane (MCP) at 200-225 °C with turnover freqency (TOF) up to 334 h and selectivity up to 99.6% for the ring opening isomerization at very high conversion (94%).

View Article and Find Full Text PDF

Carbon dioxide capture and use as a carbon feedstock presents both environmental and industrial benefits. Here we report the discovery of a hybrid oxide catalyst comprising manganese oxide nanoparticles supported on mesoporous spinel cobalt oxide, which catalyses the conversion of carbon dioxide to methanol at high yields. In addition, carbon-carbon bond formation is observed through the production of ethylene.

View Article and Find Full Text PDF

Hydrogenations of CO or CO2 are important catalytic reactions as they are interesting alternatives to produce fine chemical feedstock hence avoiding the use of fossil sources. Using monodisperse nanoparticle (NP) catalysts, we have studied the CO/H2 (i.e.

View Article and Find Full Text PDF

The interaction of the metal and support in oxide-supported transition-metal catalysts has been proven to have extremely favorable effects on catalytic performance. Herein, mesoporous Co3O4, NiO, MnO2, Fe2O3, and CeO2 were synthesized and utilized in CO oxidation reactions to compare the catalytic activities before and after loading of 2.5 nm Pt nanoparticles.

View Article and Find Full Text PDF

The surface structure of Pt(557) during the catalytic oxidation of hydrogen was studied with in situ scanning tunneling microscopy and X-ray photoelectron spectroscopy. At 298 K, the surface Pt oxide formed after exposing Pt(557) to approximately 1 Torr of O2 can be readily removed by H2, at H2 partial pressures below 50 mTorr. Water is detected as the product in the gas phase, which also coadsorbs with hydroxyl groups on the Pt(557) surface.

View Article and Find Full Text PDF

The appropriate combination of titania and silica, sulfating and non-sulfating support, respectively, results in Pd catalysts with improved water and sulfur tolerance in methane combustion. For the first time the catalyst recovers the initial activity after one cycle under lean-burn conditions without additional regenerating treatments.

View Article and Find Full Text PDF