In cycling, propulsion is generated by the muscles of the lower limbs and hips. After the first reports of pedal/crank force measurements in the late 1960s, it has been assumed that highly trained athletes have better power transfer to the pedals than recreational cyclists. However, motor patterns indicating higher levels of performance are unknown.
View Article and Find Full Text PDFThe lactate threshold (LT) and the strongly related maximal lactate steady state workload (MLSS) are critical for physical endurance capacity and therefore of major interest in numerous sports. However, their relevance to individual swimming performance is not well understood. We used a custom-made visual light pacer for real-time speed modulation during front crawl to determine the LT and MLSS in a single-exercise test.
View Article and Find Full Text PDFDuring a continuously increasing exercise workload (WL) a point will be reached at which arterial lactate accumulates rapidly. This so-called lactate threshold (LT) is associated with the maximal lactate steady state workload (MLSS), the highest WL, at which arterial lactate concentration [LA] does not change. However, the physiological range in which the LT and the MLSS occur has not been demonstrated directly.
View Article and Find Full Text PDF