A series of titanium complexes have been prepared using either salt metathesis or amine elimination reactions. Reacting the potassium salt of Ap*H {Ap*H = N-(2,6-diisopropylphenyl)-[6-(2,4,6-triisopropylphenyl)pyridin-2-yl]amine} (1) with [TiCl(4)(THF)(2)] results in the formation of a nucleophilic ring-opening product of the coordinated tetrahydrofuran (THF) ligand [Ap*TiCl(2)(OC(4)H(8)Cl)] (7). Alkylation with benzylmagnesium chloride gave rise to the corresponding benzyl complex [Ap*TiBn(2)(OC(4)H(8)Cl)] (8).
View Article and Find Full Text PDFA molecular approach to metal-containing ceramics and their application as selective heterogeneous oxidation catalysts is presented. The aminopyridinato copper complex [Cu(2)(Ap(TMS))(2)] (Ap(TMS)H=(4-methylpyridin-2-yl)trimethylsilanylamine) reacts with poly(organosilazanes) via aminopyridine elimination, as shown for the commercially available ceramic precursor HTT 1800. The reaction was studied by (1)H and (13)C NMR spectroscopy.
View Article and Find Full Text PDFBonds are at the very heart of chemistry. Although the order of carbon–carbon bonds only extends to triple bonds, metal–metal bond orders of up to five are known for stable compounds, particularly between chromium atoms. Carbometallation and especially carboalumination reactions of carbon–carbon double and triple bonds are a well established synthetic protocol in organometallic chemistry and organic synthesis.
View Article and Find Full Text PDFTwo in one: The simultaneous formation of bimetallic mu-methylene bridged Rh(III) complexes as well as dimeric Rh(III) complexes with terminal chloromethyl groups is observed for P,N-ligand stabilized Rh(I) complexes by C-Cl bond activation of methylene chloride. A mechanistic proposal for the formation of both activation products is also discussed. The synthesis of Rh(I) complexes with P-functionalized aminopyridine ligands is reported as well as the first simultaneous observation of a single and double activation of C-Cl bonds of methylene chloride affording both a dimeric Rh(III) complex bearing terminal CH(2)Cl groups in addition to a binuclear Rh(III) complex with a bridging mu-CH(2) group.
View Article and Find Full Text PDF