The interaction rate of a charged particle beam with the atomic nuclei of a target varies significantly if the target has a crystalline structure. In particular, under specific orientations of the target with respect to the incident beam, the probability of inelastic interaction with nuclei can be enhanced with respect to the unaligned case. This effect, which can be named antichanneling, can be advantageously used in the cases where the interaction between beam and target has to be maximized.
View Article and Find Full Text PDFInelastic nuclear interaction probability of 400 GeV/c protons interacting with bent silicon crystals was investigated, in particular for both types of crystals installed at the CERN Large Hadron Collider for beam collimation purposes. In comparison to amorphous scattering interaction, in planar channeling this probability is for the quasi-mosaic type (planes (111)), and for the strip type (planes (110)). Moreover, the absolute inelastic nuclear interaction probability in the axial channeling orientation, along the axis, was estimated for the first time, finding a value of for a crystal 2 mm long along the beam direction, with a bending angle of 55 rad.
View Article and Find Full Text PDFEur Phys J C Part Fields
September 2018
Charged particle beams can be manipulated by exploiting the channeling phenomenon in bent crystals. Two plate-like crystals, bent by mechanical holders, were manufactured and characterised for such purpose at the Sensor and Semiconductor Laboratory in Ferrara, Italy. An anticlastic curvature was obtained for these crystals, achieving a steering angle of the order of 1 mrad, which is about 20 times larger than the values currently achieved for the bent crystals used in the LHC for collimation experiments.
View Article and Find Full Text PDFThe radiation emitted by 855 MeV electrons via planar channeling and volume reflection in a 30.5-μm-thick bent Si crystal has been investigated at the MAMI (Mainzer Mikrotron) accelerator. The spectral intensity was much more intense than for an equivalent amorphous material, and peaked in the MeV range in the case of channeling radiation.
View Article and Find Full Text PDFA bent lithium niobate strip was exposed to a 400-GeV/c proton beam at the external lines of CERN Super Proton Synchrotron to probe its capabilities versus coherent interactions of the particles with the crystal such as channeling and volume reflection. Lithium niobate (LiNbO3) exhibits an interplanar electric field comparable to that of Silicon (Si) and remarkable piezoelectric properties, which could be exploited for the realization of piezo-actuated devices for the control of high-energy particle beams. In contrast to Si and germanium (Ge), LiNbO3 shows an intriguing effect; in spite of a low channeling efficiency (3%), the volume reflection maintains a high deflection efficiency (83%).
View Article and Find Full Text PDFSilicon/germanium flat/bent crystals are thin devices able to efficiently deflect charged particle GeV-energy beams up to a few hundreds of μrad; moreover, high intensity photons can be efficiently produced in the so-called Multi-Volume Reflection (MVR) and Multiple Volume Reflections in One Crystal (MVROC) conditions. In the last years, the research interest in this field has moved to the dynamic studies of light negative leptons in the low energy range: the possibility to deflect negative particles and to produce high intensity γ sources via the coherent interactions with crystals in the sub-GeV energy range has been proved by the ICE-RAD (Interaction in Crystals for Emission of RADiation) Collaboration at the MAinzer MIkrotron (MAMI, Germany). This paper describes the setup used by the ICE-RAD experiment for the crystals characterization (both in terms of deflection and radiation emission properties): a high precision goniometer is used to align the crystals with the incoming beam, while a silicon based profilometer and an inorganic scintillator reconstruct, respectively, the particle position and the photon spectra after the samples.
View Article and Find Full Text PDFPhys Rev Lett
February 2015
We report on an experiment performing channeling and volume reflection of a high-energy electron beam using a quasimosaic, bent silicon (111) crystal at the End Station A Test Beam at SLAC. The experiment uses beams of 3.35 and 6.
View Article and Find Full Text PDF