Publications by authors named "Germar Hoffmann"

Progress toward single-molecule electronics relies on a thorough understanding of local physico-chemical processes and development of synthetic routines for controlled hetero-coupling. We demonstrate a structurally unexpected ring closure process for a homo-coupled 4,4'-bipicenyl, realized in on-surface synthesis. An initial covalent C-C coupling of 4-bromopicene locks at lower temperatures the position and geometrically shields part of 4,4'-bipicenyl.

View Article and Find Full Text PDF

Layered MoS is considered as one of the most promising two-dimensional photocatalytic materials for hydrogen evolution and water splitting; however, the electronic structure at the MoS-liquid interface is so far insufficiently resolved. Measuring and understanding the band offset at the surfaces of MoS are crucial for understanding catalytic reactions and to achieve further improvements in performance. Herein, the heterogeneous charge transfer behavior of MoS flakes of various layer numbers and sizes is addressed with high spatial resolution in organic solutions using the ferrocene/ferrocenium (Fc/Fc) redox pair as a probe in near-field scanning electrochemical microscopy, i.

View Article and Find Full Text PDF

The [10]phenacene and [11]phenacene molecules have been synthesized using a simple repetition of Wittig reactions followed by photocyclization. Sufficient amounts of [10]phenacene and [11]phenacene were obtained, and thin-film FETs using these molecules have been fabricated with SiO and ionic liquid gate dielectrics. These FETs operated in p-channel.

View Article and Find Full Text PDF

We elucidate that the tip sharpness in scanning tunneling microscopy (STM) can be characterized through the number of field-emission (FE) resonances. A higher number of FE resonances indicates higher sharpness. We observe empty quantum well (QW) states in Pb islands on Cu(111) under different tip sharpness levels.

View Article and Find Full Text PDF

Incorporating spin-polarized scanning tunneling microscopy (SP-STM) measurements and first-principles calculations, we resolve spin-polarized states and consequent features in a pentacene(PEN)-Co hybrid system. Symmetry reduction of PEN clarifies the PEN adsorption site and the Co stacking methods. Near the Fermi energy, the molecular symmetry is spin-dependently recovered and an inversion of spin-polarization in PEN with respect to Co is observed.

View Article and Find Full Text PDF

Using ultrahigh-vacuum low-temperature scanning tunneling microscopy and spectroscopy combined with first principles density functional theory calculations, we have investigated structural and electronic properties of pristine and potassium (K)-deposited picene thin films formed in situ on a Ag(111) substrate. At low coverages, the molecules are uniformly distributed with the long axis aligned along the [112̄] direction of the substrate. At higher coverages, ordered structures composed of monolayer molecules are observed, one of which is a monolayer with tilted and flat-lying molecules resembling a (11̄0) plane of the bulk crystalline picene.

View Article and Find Full Text PDF

Well-ordered metal-organic nanostructures of Fe-PTCDA (perylene-3,4,9,10-tetracarboxylic-3,4,9,10-dianhydride) chains and networks are grown on a Au(111) surface. These structures are investigated by high-resolution scanning tunneling microscopy. Digitized frontier orbital shifts are followed in scanning tunneling spectroscopy.

View Article and Find Full Text PDF

A key challenge in the field of molecular spintronics, and for the design of single-molecule magnet-based devices in particular, is the understanding and control of the molecular coupling at the electrode interfaces. It was demonstrated for the field of molecular electronics that the characterization of the molecule-metal-interface requires the precise knowledge of the atomic environment as well as the molecular orbitals being involved in electron transport. To extend the field of molecular electronics towards molecular spintronics, it is of utmost importance to resolve the spin character of molecular orbitals interacting with ferromagnetic leads.

View Article and Find Full Text PDF

We demonstrate a reversible chiral switching of bis(phthalocyaninato) terbium(III) molecules on an Ir(111) surface by low temperature scanning tunneling microscopy. With an azimuthal rotation of its upper phthalocyanine ligand, the molecule can be switched between a chiral and an achiral configuration actuated by respective inelastic electron tunneling and local current heating. Moreover, the molecular chiral configuration can be interchanged between left and right handedness during the switching manipulations, thereby opening up potential nanotechnological applications.

View Article and Find Full Text PDF

An important development in recent synthesis strategies is the formation of electronically coupled one and two-dimensional organic systems for potential applications in nanoscale molecule-based devices. Here, we assemble one-dimensional spin chains by covalently linking basic molecular building blocks on a Au(111) surface. Their structural properties are studied by scanning tunneling microscopy and the Kondo effect of the basic molecular blocks inside the chains is probed by scanning tunneling spectroscopy.

View Article and Find Full Text PDF

By means of ab initio calculations and spin-polarized scanning tunneling microscopy experiments the creation of a complex energy dependent magnetic structure with a tailored spin-polarized interface is demonstrated. We show this novel effect by adsorbing organic molecules containing π(p(z)) electrons onto a magnetic surface. The hybridization of the out-of-plane p(z) atomic-type orbitals with the d states of the metal leads to the inversion of the spin polarization at the organic site due to a p(z)-d Zener exchange-type mechanism.

View Article and Find Full Text PDF

We investigate the spin- and energy-dependent tunneling through a single organic molecule (CoPc) adsorbed on a ferromagnetic Fe thin film, spatially resolved by low-temperature spin-polarized scanning tunneling microscopy. Interestingly, the metal ion as well as the organic ligand show a significant spin dependence of tunneling current flow. State-of-the-art ab initio calculations including also van der Waals interactions reveal a strong hybridization of molecular orbitals and substrate 3d states.

View Article and Find Full Text PDF

We address the adsorption of asymmetric Pd pincer complexes on a Cu(111) surface by scanning tunneling microscopy. The structural asymmetry is manifested in the observation of two chiral enantiomers. To enable an unambiguous identification of individual constituents, three closely related complexes with small modifications are investigated in parallel.

View Article and Find Full Text PDF

A molecular model system of tetraphenyl porphyrins (TPP) adsorbed on metallic substrates is systematically investigated within a joint scanning tunnelling microscopy/molecular modelling approach. The molecular conformation of TPP molecules, their adsorption on a gold surface and the growth of highly ordered TPP islands are modelled with a combination of density functional theory and dynamic force field methods. The results indicate a subtle interplay between different contributions.

View Article and Find Full Text PDF

We describe and discuss the design of a variable-temperature scanning tunneling microscope (STM) system for the study of molecules at temperatures between 18 and 300 K in ultrahigh vacuum. The STM head is a refinement of a very rigid design developed and successfully operated in Hamburg. In the current version, the head is connected to a liquid helium flow cryostat, thereby reaching a base temperature of 18 K.

View Article and Find Full Text PDF

A new member of the metalloporphyrinoid class, the one-carbon short corrole, has been developed in the past decade to a very accessible and easily tunable compound with many potential applications in material science and catalysis. Other than for the structurally related iron porphyrins, all attempts to prepare and study the "naked" iron triphenylcorrole molecule (FeTPC) in bulk have failed. Here, we demonstrate stabilization of FeTPC as adsorbates on a surface.

View Article and Find Full Text PDF

Based on a detailed experimental study of light emission stimulated with a scanning tunneling microscope, we put forward a consistent picture for the atomic-scale contrasts observed to date on noble metal surfaces. Divergent contrasts near various atomic steps and conflicting interpretations of light emission from a model atomic grating, (2 x 1) reconstructed Au(110), are accounted for. The light intensity modulation results from different spatial distributions of the local density of final states in the elastic and inelastic tunneling channels.

View Article and Find Full Text PDF

Unusual emission of visible light is observed in scanning tunneling microscopy of the quantum well system Na on Cu(111). Photons are emitted at energies exceeding the energy of the tunneling electrons. Model calculations of two-electron processes which lead to quantum well transitions reproduce the experimental fluorescence spectra, the quantum yield, and the power-law variation of the intensity with the excitation current.

View Article and Find Full Text PDF