Publications by authors named "German Samolyuk"

We present four open-source datasets that provide results of density functional theory (DFT) calculations of ground-state properties of refractory solid solution binary alloys niobium-tantalum (NbTa), niobium-vanadium (NbV), tantalum-vanadium (TaV), and ternary alloys NbTaV ordered in body-centered-cubic (BCC) structures with 128 Bravais lattice sites. The first-principles code used to run the calculations is the Vienna Ab-Initio Simulation Package. The calculations have been collected by uniformly sampling chemical compositions across the entire compositional range.

View Article and Find Full Text PDF

Using first-principles calculations, we investigate the origin of magnetocrystalline anisotropy in a series of 4-electron-free intermetallics with CaCu-based structures: YCo, YCoB, and YCoB. The electronic structure of these compounds is characterized by a set of narrow 3bands near the Fermi level. In YCothe easy-axis anisotropy originates primarily in the spin-orbit coupling-induced mixing of the electronic states with Codx2-y2anddxycharacter.

View Article and Find Full Text PDF

Molten salts play an important role in various energy-related applications such as high-temperature heat transfer fluids and reaction media. However, the extreme molten salt environment causes the degradation of materials, raising safety and sustainability challenges. A fundamental understanding of material-molten salt interfacial evolution is needed.

View Article and Find Full Text PDF

Machine learning force fields (MLFFs) are an increasingly popular choice for atomistic simulations due to their high fidelity and improvable nature. Here we propose a hybrid small-cell approach that combines attributes of both offline and active learning to systematically expand a quantum-mechanical (QM) database while constructing MLFFs with increasing model complexity. Our MLFFs employ the moment tensor potential formalism.

View Article and Find Full Text PDF

Understanding magnetism and its possible correlations to topological properties has emerged to the forefront as a difficult topic in studying magnetic Weyl semimetals. Co_{3}Sn_{2}S_{2} is a newly discovered magnetic Weyl semimetal with a kagome lattice of cobalt ions and has triggered intense interest for rich fantastic phenomena. Here, we report the magnetic exchange couplings of Co_{3}Sn_{2}S_{2} using inelastic neutron scattering and two density functional theory (DFT) based methods: constrained magnetism and multiple-scattering Green's function methods.

View Article and Find Full Text PDF

Single-phase high- and medium-entropy alloys with face-centred cubic (fcc) structure can exhibit high tensile ductility and excellent toughness, but their room-temperature strengths are low. Dislocation obstacles such as grain boundaries, twin boundaries, solute atoms and precipitates can increase strength. However, with few exceptions, such obstacles tend to decrease ductility.

View Article and Find Full Text PDF

We show that the Fermi surface can survive the presence of extreme compositional disorder in the equiatomic alloy Ni_{0.25}Fe_{0.25}Co_{0.

View Article and Find Full Text PDF

The face centered cubic (fcc) alloy NiCoCrx with x ≈ 1 is found to be close to the Cr concentration where the ferromagnetic transition temperature, Tc, goes to 0. Near this composition these alloys exhibit a resistivity linear in temperature to 2 K, a linear magnetoresistance, an excess -TlnT (or power law) contribution to the low temperature heat capacity, and excess low temperature entropy. All of the low temperature electrical, magnetic and thermodynamic properties of the alloys with compositions near x ≈ 1 are not typical of a Fermi liquid and suggest strong magnetic fluctuations associated with a quantum critical region.

View Article and Find Full Text PDF

A grand challenge in materials research is to understand complex electronic correlation and non-equilibrium atomic interactions, and how such intrinsic properties and dynamic processes affect energy transfer and defect evolution in irradiated materials. Here we report that chemical disorder, with an increasing number of principal elements and/or altered concentrations of specific elements, in single-phase concentrated solid solution alloys can lead to substantial reduction in electron mean free path and orders of magnitude decrease in electrical and thermal conductivity. The subsequently slow energy dissipation affects defect dynamics at the early stages, and consequentially may result in less deleterious defects.

View Article and Find Full Text PDF

A metastable phase α-FeSi_{2} was epitaxially stabilized on a silicon substrate using pulsed laser deposition. Nonmetallic and ferromagnetic behaviors are tailored on α-FeSi_{2} (111) thin films, while the bulk material of α-FeSi_{2} is metallic and nonmagnetic. The transport property of the films renders two different conducting states with a strong crossover at 50 K, which is accompanied by the onset of a ferromagnetic transition as well as a substantial magnetoresistance.

View Article and Find Full Text PDF

We present detailed thermodynamic and transport measurements on single crystals of the recently discovered binary intermetallic superconductor, SrSn(4). We find this material to be a slightly anisotropic three-dimensional, strongly coupled, possibly multiband, superconductor. Hydrostatic pressure causes a decrease in the superconducting transition temperature at the rate of ≈ - 0.

View Article and Find Full Text PDF

Two different approaches to explain and predict the types of magnetic ordering in the 3d metal series and their compounds are reviewed. According to the crossing theorem of Heine and Samson, the effective exchange coupling changes sign from negative (antiferromagnetic ordering) in the middle of 3d band to positive (ferromagnetic ordering) for the nearly empty or nearly filled d band cases. On the other hand, the analytical properties of the Crystal Orbital Hamilton Population, which is a measure of chemical bonding, predict only one crossing at the center of the band in the region of nonbonding states.

View Article and Find Full Text PDF

Polycrystalline samples and single crystals of the complex boride Ti9Fe2Ru18B8 were synthesized by arc-melting the elements and characterized by single-crystal X-ray diffraction and energy-dispersive X-ray analysis. Ti9Fe2Ru18B8 is a new substitutional variant of the Zn11Rh18B8 structure type, space group P4/mbm (No. 127), whose remarkable feature is that it contains one-dimensional chains of dumbbells of magnetically active Fe atoms, which form "ladders" along the c axis.

View Article and Find Full Text PDF