The electrochemical glucose oxidation reaction (GOR) presents an opportunity to produce hydrogen and high-value chemical products. Herein, we investigate the effect of Sn in Ni nanoparticles for the GOR to formic acid (FA). Electrochemical results show that the maximum activity is related to the amount of Ni, as Ni sites are responsible for catalyzing the GOR via the NiOOH/Ni(OH) pair.
View Article and Find Full Text PDFThe magnetic properties of spinel nanoparticles can be controlled by synthesizing particles of a specific shape and size. The synthesized nanorods, nanodots and cubic nanoparticles have different crystal planes selectively exposed on the surface. The surface effects on the static magnetic properties are well documented, while their influence on spin waves dispersion is still being debated.
View Article and Find Full Text PDFA manganese(II) metal-organic framework based on the hexatopic hexakis(4-carboxyphenyl)benzene, cpb: [Mn(cpb)(dmf)], was solvothermally prepared showing a Langmuir area of 438 m g, rapid uptake OF sulfur hexafluoride (SF) as well as electrochemical and magnetic properties, while single crystal diffraction reveals an unusual rod-MOF topology.
View Article and Find Full Text PDFThe field-induced ordering of concentrated ferrofluids based on spherical and cuboidal maghemite nanoparticles is studied using small-angle neutron scattering, revealing a qualitative effect of the faceted shape on the interparticle interactions as shown in the structure factor and correlation lengths. Whereas a spatially disordered hard-sphere interaction potential with a short correlation length is found for ∼9 nm spherical nanoparticles, nanocubes of a comparable particle size exhibit a more pronounced interparticle interaction and the formation of linear arrangements. Analysis of the anisotropic two-dimensional pair distance correlation function gives insight into the real-space arrangement of the nanoparticles.
View Article and Find Full Text PDFCellulose nanofibrils (CNFs) with carboxylated surface ligands are a class of materials with tunable surface functionality, good mechanical properties, and bio-/environmental friendliness. They have been used in many applications as scaffold, reinforcing, or functional materials, where the interaction between adsorbed moisture and the CNF could lead to different properties and structures and become critical to the performance of the materials. In this work, we exploited multiple experimental methods to study the water movement in hydrated films made of carboxylated CNFs prepared by TEMPO oxidation with two different surface charges of 600 and 1550 μmol·g.
View Article and Find Full Text PDFGlycerol electrolysis affords a green and energetically favorable route for the production of value-added chemicals at the anode and H production in parallel at the cathode. Here, a facile method for trapping Pt nanoparticles at oxygen vacancies of molybdenum oxide (MoO ) nanosheets, yielding a high-performance MoO /Pt composite electrocatalyst for both the glycerol oxidation reaction (GOR) and the hydrogen evolution reaction (HER) in alkaline electrolytes, is reported. Combined electrochemical experiments and theoretical calculations reveal the important role of MoO nanosheets for the adsorption of glycerol molecules in GOR and the dissociation of water molecules in HER, as well as the strong electronic interaction with Pt.
View Article and Find Full Text PDFSelf-assembly of cellulose nanocrystals (CNCs) doped with anisotropic gold nanorods (AuNRs) was studied by small-angle neutron scattering. Correlation distances and structured domains were analysed to determine the influence of CNC and AuNR concentration on structuring. The transfer of the nematic structure of CNCs to AuNRs is explained in terms of an entropy-driven evolution from an isotropic to a cholesteric phase, with small nematic domains already present in the "isotropic" phase in equilibrium with the chiral nematic phase.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2020
Chemical modification of cellulose is beneficial to produce highly porous lithium-ion battery (LIB) separators, but introduction of high charge density adversely affects its electrochemical stability in a LiNiMnCoO (NMC)/graphite full cell. In this study, the influence of carboxylate functional groups in 2,2,6,6-tetramethylpiperidine-1-oxyl-mediated oxidized cellulose nanofibers (TOCNs) on the electrochemical performances of the LIB separator was investigated. X-ray photoelectron spectroscopy and in operando mass spectrometry measurements were used to elucidate the cause of failure of the batteries containing TOCN separators in the presence and absence of sodium counterions in the carboxylate groups and additives.
View Article and Find Full Text PDFPolymeric supports from renewable resources such as cellulose nanomaterials are having a direct impact on the development of heterogenous sustainable catalysts. Recently, to increase the potentiality of these materials, research has been oriented towards novel functionalization possibilities. In this study, to increase the stability of cellulose nanofiber films as catalytic supports, by limiting the solubility in water, we report the synthesis of new hybrid catalysts (HC) based on silver, gold, and platinum nanoparticles, and the corresponding bimetallic nanoparticles, supported on cellulose nanofibers (CNFs) cross-linked with borate ions.
View Article and Find Full Text PDFMaghemite nanoparticles with high surface area were obtained from the dehydroxylation of lepidocrocite prismatic nanoparticles. The synthesis pathway from the precursor to the porous maghemite nanoparticles is inexpensive, simple and gives high surface area values for both lepidocrocite and maghemite. The obtained maghemite nanoparticles contained intraparticle and interparticle pores with a surface area ca.
View Article and Find Full Text PDFInspired by the Bogolanfini dyeing technique, we report how flexible nanofibrillated cellulose (CNF) films can be functionalized and patterned by surface-bound nanoparticles of hydrolyzable tannins and multivalent metal ions with tunable colors. Molecular dynamics simulations show that gallic acid (GA) and ellagic acid (EA) rapidly adsorb and assemble on the CNF surface, and atomic force microscopy confirms that nanosized GA assemblies cover the surface of the CNF. CNF films were patterned with tannin-metal ion nanoparticles by an in-fibre reaction between the pre-impregnated tannin and the metal ions in the printing ink.
View Article and Find Full Text PDFThe ability to probe the assembly, gelation, and helicoidal consolidation of cellulose nanocrystal (CNC) dispersions at high concentrations can provide unique insight into the assembly and can assist optimized manufacturing of CNC-based photonic and structural materials. In this Feature Article, we review and discuss the concentration dependence of the structural features, characterized by the particle separation distance and the helical pitch, at CNC concentrations ( c) that range from the isotropic state, over the biphasic range, to the fully liquid crystalline state. The structure evolution of CNC dispersions probed by time-resolved small-angle X-ray scattering during evaporation-induced assembly highlighted the importance of gelation and consolidation at high concentrations.
View Article and Find Full Text PDFIn this paper, we use dynamic light scattering in polarized and depolarized modes to determine the translational and rotational diffusion coefficients of concentrated rodlike cellulose nanocrystals in aqueous suspension. Within the range of studied concentrations (1-5 wt %), the suspension starts a phase transition from an isotropic to an anisotropic state as shown by polarized light microscopy and viscosity measurements. Small-angle neutron scattering measurements also confirmed the start of cellulose nanocrystal alignment and a decreasing distance between the cellulose nanocrystals with increasing concentration.
View Article and Find Full Text PDFThe formation of nematically-ordered cellulose nanofiber (CNF) suspensions with an order parameter f≈ 0.8 is studied by polarized optical microscopy, small-angle X-ray scattering (SAXS), and rheological measurements as a function of CNF concentration. The wide range of CNF concentrations, from 0.
View Article and Find Full Text PDFAssembly of bio-based nano-sized particles into complex architectures and morphologies is an area of fundamental interest and technical importance. We have investigated the assembly of sulfonated cellulose nanocrystals (CNC) dispersed in a shrinking levitating aqueous drop using time-resolved small angle X-ray scattering (SAXS). Analysis of the scaling of the particle separation distance (d) with particle concentration (c) was used to follow the transition of CNC dispersions from an isotropic state at 1-2 vol% to a compressed nematic state at particle concentrations above 30 vol%.
View Article and Find Full Text PDFCarboxylated cellulose nanofibers (CNF) prepared using the TEMPO-route are good binders of electrode components in flexible lithium-ion batteries (LIB). However, the different parameters employed for the defibrillation of CNF such as charge density and degree of homogenization affect its properties when used as binder. This work presents a systematic study of CNF prepared with different surface charge densities and varying degrees of homogenization and their performance as binder for flexible LiFePO electrodes.
View Article and Find Full Text PDFUnderstanding the assembly of nanoparticles into superlattices with well-defined morphology and structure is technologically important but challenging as it requires novel combinations of in-situ methods with suitable spatial and temporal resolution. In this study, we have followed evaporation-induced assembly during drop casting of superparamagnetic, oleate-capped γ-FeO nanospheres dispersed in toluene in real time with Grazing Incidence Small Angle X-ray Scattering (GISAXS) in combination with droplet height measurements and direct observation of the dispersion. The scattering data was evaluated with a novel method that yielded time-dependent information of the relative ratio of ordered (coherent) and disordered particles (incoherent scattering intensities), superlattice tilt angles, lattice constants, and lattice constant distributions.
View Article and Find Full Text PDFMesocrystals composed of crystallographically aligned nanocrystals are present in biominerals and assembled materials which show strongly directional properties of importance for mechanical protection and functional devices. Mesocrystals are commonly formed by complex biomineralization processes and can also be generated by assembly of anisotropic nanocrystals. Here, we follow the evaporation-induced assembly of maghemite nanocubes into mesocrystals in real time in levitating drops.
View Article and Find Full Text PDFThe exchange bias properties of Co/CoO coaxial core/shell nanowires were investigated with cooling and applied fields perpendicular to the wire axis. This configuration leads to unexpected exchange-bias effects. First, the magnetization value at high fields is found to depend on the field-cooling conditions.
View Article and Find Full Text PDFA precise control over the meso- and microstructure of ordered and aligned nanoparticle assemblies, i.e., mesocrystals, is essential in the quest for exploiting the collective material properties for potential applications.
View Article and Find Full Text PDFThe physicochemical properties used in numerous advanced nanostructured devices are directly controlled by the oxidation states of their constituents. In this work we combine electron energy-loss spectroscopy, blind source separation, and computed tomography to reconstruct in three dimensions the distribution of Fe(2+) and Fe(3+) ions in a FeO/Fe3O4 core/shell cube-shaped nanoparticle with nanometric resolution. The results highlight the sharpness of the interface between both oxides and provide an average shell thickness, core volume, and average cube edge length measurements in agreement with the magnetic characterization of the sample.
View Article and Find Full Text PDFMineral surfaces exposed to moist air stabilize nanometer- to micrometer-thick water films. This study resolves the nature of thin water film formation at multifaceted hematite (α-Fe2O3) nanoparticle surfaces with crystallographic faces resolved by selected area electron diffraction. Dynamic vapor adsorption (DVA) in the 0-19 Torr range at 298 K showed that these particles stabilize water films consisting of up to 4-5 monolayers.
View Article and Find Full Text PDFNanosized composite rods ∼300 nm in length and ∼20 nm in width were produced by deposition of 22-77 wt% of a c-axis-oriented hydroxyapatite (HA) on cellulose nanocrystals (CNCs). The CNCs functionalized with sulphonic groups were covered with the HA nanocrystals through controlled nucleation and growth under a moderately supersaturated condition in a solution system based on a simulated body fluid. Water-resistant transparent coatings 2-4 μm thick were obtained via evaporation-induced assembly of CNC-HA nanocomposites by casting their suspension on a glass substrate and the subsequent growth of HA nanocrystals by vapour hydrothermal treatment.
View Article and Find Full Text PDFThe packing of cellulose nanocrystals (CNC) in the anisotropic chiral nematic phase has been investigated over a wide concentration range by small-angle X-ray scattering (SAXS) and laser diffraction. The average separation distance between the CNCs and the average pitch of the chiral nematic phase have been determined over the entire isotropic-anisotropic biphasic region. The average separation distances range from 51 nm, at the onset of the anisotropic phase formation, to 25 nm above 6 vol % (fully liquid crystalline phase) whereas the average pitch varies from ≈15 μm down to ≈2 μm as ϕ increases from 2.
View Article and Find Full Text PDF