Publications by authors named "German Kolmakov"

We demonstrate experimentally and in computer simulations that magnetic microfloaters can self-organize into various functional structures while energized by an external alternating (ac) magnetic field. The structures exhibit self-propelled motion and an ability to carry a cargo along a pre-defined path. The morphology of the self-assembled swimmers is controlled by the frequency and amplitude of the magnetic field.

View Article and Find Full Text PDF

Single-walled carbon nanotubes (SWNTs) have been shown from both simulations and experiments to have remarkably low resistance to gas and liquid transport. This has been attributed to the remarkably smooth interior surface of pristine SWNTs. However, real SWNTs are known to have various defects that depend on the synthesis method and procedure used to activate the SWNTs.

View Article and Find Full Text PDF

Inspired by the collective behavior of slime molds and amoebas, we designed synthetic cell-like objects that move and self-organize in response to self-generated chemical gradients, thereby exhibiting autochemotaxis. Using computational modeling, we specifically focused on microcapsules that encompass a permeable shell and are localized on an adhesive surface in solution. Lacking any internal machinery, these spherical, fluid-filled shells might resemble the earliest protocells.

View Article and Find Full Text PDF

The Bose-stimulated self-organization of a quasi-two-dimensional nonequilibrium Bose-Einstein condensate in an in-plane potential is proposed. We obtained the solution of the nonlinear, driven-dissipative Gross-Pitaevskii equation for a Bose-Einstein condensate trapped in an external asymmetric parabolic potential within the method of the spectral expansion. We found that, in sharp contrast to previous observations, the condensate can spontaneously acquire a solitonlike shape for spatially homogeneous pumping.

View Article and Find Full Text PDF

We propose a design of a Y-shaped electrically controlled optical switch based on the studies of propagation of an exciton-polariton condensate in a patterned optical microcavity with an embedded quantum well. The polaritons are driven by a time-independent force due to the microcavity wedge shape and by a time-dependent drag force owing to the interaction of excitons in a quantum well and the electric current running in a neighboring quantum well. It is demonstrated that by applying the drag force one can direct more than 90% of the polariton flow toward the desired branch of the switch with no hysteresis.

View Article and Find Full Text PDF

Wave turbulence (WT) occurs in systems of strongly interacting nonlinear waves and can lead to energy flows across length and frequency scales much like those that are well known in vortex turbulence. Typically, the energy passes although a nondissipative inertial range until it reaches a small enough scale that viscosity becomes important and terminates the cascade by dissipating the energy as heat. Wave turbulence in quantum fluids is of particular interest, partly because revealing experiments can be performed on a laboratory scale, and partly because WT among the Kelvin waves on quantized vortices is believed to play a crucial role in the final stages of the decay of (vortex) quantum turbulence.

View Article and Find Full Text PDF

Inspired by molecular mechanisms that cells exploit to sense mechanical forces and convert them into biochemical signals, chemists dream of designing mechanochemical switches integrated into materials. Using the adhesion protein fibronectin, whose multiple repeats essentially display distinct molecular recognition motifs, we derived a computational model to explain how minimalistic designs of repeats translate into the mechanical characteristics of their fibrillar assemblies. The hierarchy of repeat-unfolding within fibrils is controlled not only by their relative mechanical stabilities, as found for single molecules, but also by the strength of cryptic interactions between adjacent molecules that become activated by stretching.

View Article and Find Full Text PDF

Nanoparticles have useful properties, but it is often important that they only start working after they are placed in a desired location. The encapsulation of nanoparticles allows their function to be preserved until they are released at a specific time or location, and this has been exploited in the development of self-healing materials and in applications such as drug delivery. Encapsulation has also been used to stabilize and control the release of substances, including flavours, fragrances and pesticides.

View Article and Find Full Text PDF

Cell separation technology is a key tool for biological studies and medical diagnostics that relies primarily on chemical labeling to identify particular phenotypes. An emergent method of sorting cells based on differential rolling on chemically patterned substrates holds potential benefits over existing technologies, but the underlying mechanisms being exploited are not well characterized. In order to better understand cell rolling on complex surfaces, a microfluidic device with chemically patterned stripes of the cell adhesion molecule P-selectin was designed.

View Article and Find Full Text PDF

Using computational modeling, we investigate the mechanical properties of polymeric materials composed of coiled chains, or "globules", which encompass a folded secondary structure and are cross-linked by labile bonds to form a macroscopic network. In the presence of an applied force, the globules can unfold into linear chains and thereby dissipate energy as the network is deformed; the latter attribute can contribute to the toughness of the material. Our goal is to determine how to tailor the labile intra- and intermolecular bonds within the network to produce material exhibiting both toughness and strength.

View Article and Find Full Text PDF

We use computational modeling to determine the mechanical response of crosslinked nanogels to an atomic force microscope (AFM) tip that is moved through the sample. We focus on two-dimensional systems where the nanogels are interconnected by both strong and labile bonds. To simulate this system, we modify the lattice spring model (LSM) to extend the applicability of this method to a broader range of elastic materials.

View Article and Find Full Text PDF

We develop a hybrid computational approach to examine the mechanical properties and self-healing behavior of nanogel particles that are cross-linked by both stable and labile bonds. The individual nanogels are modeled via the lattice spring model (LSM), which is an effective method for probing the response of materials to mechanical deformation. The cross-links between the nanogels are simulated via the hierarchical Bell model (HBM), which allows us to capture the rupturing of multiple parallel bonds as the result of an applied force.

View Article and Find Full Text PDF

Using computational modeling, we design colonies of biomimetic microcapsules that exploit chemical mechanisms to communicate and alter their local environment. As a result, these synthetic objects can self-organize into various autonomously moving structures and exhibit ant-like tracking behavior. In the simulations, signaling microcapsules release agonist particles, whereas target microcapsules release antagonist particles and the permeabilities of both capsule types depend on the local particle concentration in the surrounding solution.

View Article and Find Full Text PDF

Using a hybrid computational approach, we simulate the behavior of nanoparticle-filled microcapsules that are propelled by an imposed shear to move over a substrate, which encompasses a microscopic crack. When the microcapsules become localized in the crack, the nanoparticles can penetrate the capsule's shell to bind to and fill the damaged region. Initially focusing on a simple shear flow, we isolate conditions where the microcapsules become arrested in the cracks and those where the capsules enter the cracks for a finite time but are driven to leave this region by the imposed flow.

View Article and Find Full Text PDF

Using computational modeling, we demonstrate the self-healing behavior of novel materials composed of nanoscopic gel particles that are interconnected into a macroscopic network by both stable and labile bonds. Under mechanical stress, the labile bonds between the nanogels can break and readily re-form with reactive groups on neighboring units. This breaking and re-forming allows the units in the network to undergo a structural rearrangement that preserves the mechanical integrity of the sample.

View Article and Find Full Text PDF