Publications by authors named "German D"

Mice overexpressing mutant Alzheimer's disease (AD)-related proteins exhibit many of the neuropathological and behavioral features of the human disease. Transgenic animals have been created that express mutations in the amyloid precursor protein (APP), presenilin (PS)1, and PS2, and also animals expressing more than one of these mutations. For example, in APP mouse models, there are age-related accumulations of amyloid-beta (Abeta)-containing neuritic plaques in the hippocampus and cerebral cortex, activation of astrocytes and microglial cells in regions containing plaques, and degeneration of cholinergic nerve terminals in brain regions that eventually become plaque containing.

View Article and Find Full Text PDF

We measured the activities of eight digestive enzymes in four species of herbivorous and carnivorous prickleback fishes and determined the effects of ontogeny, diet, and phylogeny on these enzyme activities. Of the four species, Cebidichthys violaceus and Xiphister mucosus shift to a more herbivorous diet as they grow (> or =45 mm SL [standard length]), whereas Xiphister atropurpureus and Anoplarchus purpurescens remain carnivores throughout life. Digestive enzyme activities of small (30-40 mm SL) carnivorous juveniles were compared with those of larger (60-75 mm SL) wild-caught juveniles that had consumed a natural diet and larger (60-75 mm SL) juveniles raised on a high-protein animal diet.

View Article and Find Full Text PDF

An abundant presynaptic protein, alpha-synuclein, is centrally involved in the pathogenesis of Parkinson's disease. However, conflicting data exist about the normal function of alpha-synuclein, possibly because alpha-synuclein is redundant with the very similar beta-synuclein. To investigate the functions of synucleins systematically, we have now generated single- and double-knockout (KO) mice that lack alpha- and/or beta-synuclein.

View Article and Find Full Text PDF

Objective: The mediodorsal and anteroventral/anteromedial nuclei of the thalamus are brain regions of interest in the study of mood disorders because they connect subcortical limbic system structures such as the amygdala with the prefrontal, cingulate, and temporal cortices. Anatomical abnormalities have been observed both in the amygdala and in the aforementioned cortical regions in affective disorder patients. Neuroanatomical studies of the thalamus have rarely been conducted in patients with mood disorders.

View Article and Find Full Text PDF

This retrospective, exploratory investigation examined the types of target words that 30 children with word-finding difficulties (aged 8 to 12 years) had difficulty naming and the types of errors they made on these words. Words were studied with reference to lexical factors that might influence naming performance: word frequency, age of acquisition, familiarity, and lexical neighborhood. Findings indicated that neighborhood density predicted word-finding success, and target word substitutions and error patterns manifested were affected by the lexical factors under study.

View Article and Find Full Text PDF

The dopaminergic neurons in the ventral substantia nigra (SN) are significantly more vulnerable to degeneration in Parkinson's disease (PD) than the dopaminergic neurons in the ventral tegmental area (VTA). The ventral SN neurons also contain significantly more neuromelanin pigment than the dopaminergic neurons in the VTA. In vitro data indicate that neuromelanin pigment is formed from the excess cytosolic catecholamine that is not accumulated into synaptic vesicles by the vesicular monoamine transporter-2 (VMAT2).

View Article and Find Full Text PDF

Spinal column pathology plays an important role in the etiology and pathogenesis of acute and chronic spinal blood supply disturbances. The aim of the study was to determine a role of degenerative-dystrophic changes, arising as a consequence of Scheuermann's disease in a mechanism of this pathology development. In patients aged 17-65 years, subjected to study of the causes of acute (8 cases) and chronic (7 cases) ischemic spinal disturbances development a significance of spinal column structures changes in juvenile kyphosis for evolution of spinal cord vascular pathology was established.

View Article and Find Full Text PDF

Object: The authors have developed an intracranial near-infrared (NIR) probe that analyzes the scattering of light emitted from its tip to measure the optical properties of cerebral tissue. Despite its success in distinguishing graymatter from white matter in humans during stereotactic surgery, the limits of this instrument's resolution remain unclear. In this study, the authors determined the spatial resolution of this new probe by using a rodent model supplemented with phantom measurements and computer simulation.

View Article and Find Full Text PDF

Transgenic mice overexpressing mutant human amyloid precursor protein (PDAPP mice) develop several Alzheimer's disease (AD)-like lesions including an age-related accumulation of amyloid-beta (Abeta)-containing neuritic plaques. Although aged, heterozygous PDAPP mice also exhibit synaptic and glial cell changes characteristic of AD pathology, no evidence of widespread neuronal loss has been observed. The present study sought to determine whether homozygous PDAPP mice, which express very high levels of Abeta peptide, exhibit AD-like cholinergic degenerative changes, and whether the changes parallel the deposition of Abeta plaques.

View Article and Find Full Text PDF

This investigation studied the influence of lexical factors, known to impact lexical access in adults, on the word retrieval of children. Participants included 320 typical and atypical (word-finding difficulties) language-learning children, ranging in age from 7 to 12 years. Lexical factors examined included word frequency, age-of-acquisition, neighborhood density, neighborhood frequency, and stress pattern.

View Article and Find Full Text PDF

Since the onset of the crack epidemic in the U.S. in the 1980s, the social and health consequences to the drug's users from their perspective has received limited attention.

View Article and Find Full Text PDF

Purpose: The authors attempted to determine male and female medical students' exposures to and perceptions of gender discrimination and sexual harassment (GD/SH) in selected academic and nonacademic contexts.

Method: An anonymous, self-report questionnaire was administered in the spring of 1997 to senior medical students at 14 U.S.

View Article and Find Full Text PDF

A mouse model of Niemann-Pick type C disease has been found that exhibits neuropathology similar to the human condition. There is an age-related neurodegeneration in several brain regions and a lack of myelin in the corpus callosum in these mice. The purpose of the present study was to examine the Niemann-Pick mouse and determine whether: (1) microglia and astrocytes exhibit ultrastructural pathology similar to that found in neurons; (2) nerve fiber number is reduced when the myelin sheath is absent; and (3) the lysosomal hydrolase, cathepsin-D, is involved in the neurodegenerative process.

View Article and Find Full Text PDF

The BALB/c mouse model of Niemann-Pick type C disease exhibits similar neuropathological features to the human condition, including cerebral atrophy, demyelination of the corpus callosum, and degeneration of cerebellar Purkinje cells. The gene defect in Niemann-Pick C disease causes cholesterol to accumulate within the lysosomal compartment of neurons and glial cells. In order to determine whether cholesterol accumulation through the low-density lipoprotein receptor pathway plays an important role in the degenerative process, Niemann-Pick C mice were crossed with low-density lipoprotein receptor knockout mice.

View Article and Find Full Text PDF

The BALB/c mouse model of Niemann-Pick type C (NPC) disease exhibits neuropathological similarities to the human condition. There is an age-related cerebral atrophy, demyelination of the corpus callosum, and degeneration of cerebellar Purkinje cells in the NPC mouse. In human NPC, many cortical and subcortical neurons contain neurofibrillary tangles, which are thought by some investigators to play an important role in the neurodegenerative process.

View Article and Find Full Text PDF

The vesicular monoamine transporter in the brain can sequester the neurotoxin 1-methyl-4-phenylpyridinium into synaptic vesicles and protect catecholamine-containing neurons from degeneration. Mouse nigrostriatal dopaminergic neurons, and to a lesser extent locus coeruleus noradrenergic neurons, are vulnerable to toxicity produced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. The present study sought to determine whether pharmacological inactivation of the vesicular monoamine transporter in the brain would enhance the degeneration of substantia nigra dopaminergic neurons and locus coeruleus noradrenergic neurons in 1-methyl-4-phenyl-1,2,3, 6-tetrahydropyridine-treated animals.

View Article and Find Full Text PDF

Estrogens have numerous reproductive and nonreproductive functions in brain. The actions of estrogens are mediated by estrogen receptors (ERs), and estrogens are believed to down-regulate their own receptors in many tissues. Assuming this to be true, if estrogens are removed there should be an upregulation of ERs.

View Article and Find Full Text PDF

Background: The thalamus is a brain region of interest in the study of schizophrenia because it provides critical input to brain regions such as the prefrontal, cingulate, and temporal cortices, where abnormalities have been repeatedly observed in patients with schizophrenia. Postmortem anatomic studies have rarely investigated the thalamus in this population.

Methods: Postmortem tissue was obtained from the left hemisphere of eight male schizophrenic patients and eight male age-matched control subjects.

View Article and Find Full Text PDF

Significant differences exist in the sensitivity of mice and rats to the neurotoxicity of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) that cannot be explained by differences in exposure to or uptake of 1-methyl-4-phenylpyridinium (MPP(+)) into dopamine (DA) neurons. MPP(+) is also a substrate for the brain vesicular monoamine transporter (VMAT2), and sequestration into synaptic vesicles may be one mechanism of protection against MPP(+) toxicity. A greater sequestration of MPP(+) into vesicles of DA neurons in rats versus mice could explain the lower vulnerability of DA neurons in the rat to MPP(+) toxicity.

View Article and Find Full Text PDF

Objective: As female life expectancy increases, women spend a greater proportion of their life in menopause. Menopausal women may benefit from preventive treatments, such as hormone replacement therapy, and are more likely to use medical treatments if they have access to information about menopause. The purpose of this study was to identify women's needs with respect to learning about menopause.

View Article and Find Full Text PDF

Mesopontine cholinergic neurons influence midbrain dopaminergic neurons, and thalamic and cerebellar structures which have been implicated in the neuroanatomy of schizophrenia. It has been reported that there are approximately twice as many mesopontine cholinergic neurons in schizophrenics than in normals, using nicotinomide adenosine dinucleotide phosphatediaphorase histochemistry to identify the cholinergic neurons. The present study sought to replicate this finding by analysing mesopontine cholinergic neurons using an antibody against choline acetyltransferase.

View Article and Find Full Text PDF

Neurochemical and functional abnormalities of the striatum have been reported in schizophrenic brains, but the cellular substrates of these changes are not known. We hypothesized that schizophrenia may involve an abnormality in one of the key modulators of striatal output, the cholinergic interneuron. We measured the densities of cholinergic neurons in the striatum in schizophrenic and control brains in a blind analysis, using as a marker of this cell population immunoreactivity for choline acetyltransferase, the synthetic enzyme of acetylcholine.

View Article and Find Full Text PDF

The pars compacta and pars dissipata of the pedunculopontine nucleus contain cholinergic cell group Ch5, and the laterodorsal tegmental nucleus contains cholinergic cell group Ch6. The pedunculopontine nucleus has been implicated in a variety of functions, including mediation of rapid eye movement sleep and in extrapyramidal motor function, although the role of cholinergic and non-cholinergic neurons is unclear. Quantitative neuroanatomical techniques were used to map the distribution of cholinergic neurons in the mesopontine nuclei of the adult human brain.

View Article and Find Full Text PDF

The neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine produces a parkinsonian syndrome in man and experimental animals. The toxic metabolite of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, 1-methyl-4-phenylpyridinium, exhibits high-affinity uptake by plasma membrane monoamine transporters and also by the vesicular monoamine transporter. Using autoradiographic and immunohistochemical methods in mice, we demonstrate the accumulation of [3H]1-methyl-4-phenylpyridinium within neurons that contain the vesicular monoamine transporter, following systemic administration of [3H]1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine.

View Article and Find Full Text PDF