Publications by authors named "German D Schrott"

An electrical model able to decouple the electron pathway from microbial cell machinery impedance terms is introduced. In this context, capacitance characteristics of the biofilm are clearly resolved. In other words, the model allows separating, according to the advantage of frequency and spectroscopic response approach, the different terms controlling the performance of the microbial biofilm respiratory process and thus the directly related electricity production process.

View Article and Find Full Text PDF

The elucidation of mechanisms and limitations in electrode respiration by electroactive biofilms is significant for the development of rapidly emerging clean energy production and wastewater treatment technologies. In Geobacter sulfurreducens biofilms, the controlling steps in current production are thought to be the metabolic activity of cells, but still remain to be determined. By quantifying the DNA, RNA, and protein content during the long-term growth of biofilms on polarized graphite electrodes, we show in this work that current production becomes independent of DNA accumulation immediately after a maximal current is achieved.

View Article and Find Full Text PDF

Devices that exploit electricity produced by electroactive bacteria such as Geobacter sulfurreducens have not yet been demonstrated beyond the laboratory scale. The current densities are far from the maximum that the bacteria can produce because fundamental properties such as the mechanism of extracellular electron transport and factors limiting cell respiration remain unclear. In this work, a strategy for the investigation of electroactive biofilms is presented.

View Article and Find Full Text PDF

The mechanism of electron transport in Geobacter sulfurreducens biofilms is a topic under intense study and debate. Although some proteins were found to be essential for current production, the specific role that each one plays in electron transport to the electrode remains to be elucidated and a consensus on the mechanism of electron transport has not been reached. In the present paper, to understand the state of the art in the topic, electron transport from inside of the cell to the electrode in Geobacter sulfurreducens biofilms is analysed, reviewing genetic studies, biofilm conductivity assays and electrochemical and spectro-electrochemical experiments.

View Article and Find Full Text PDF