Publications by authors named "German A Bianco"

Despite their central function in orchestrating immunity, dendritic cells (DCs) can respond to inhibitory signals by becoming tolerogenic. Here we show that galectin-1, an endogenous glycan-binding protein, can endow DCs with tolerogenic potential. After exposure to galectin-1, DCs acquired an interleukin 27 (IL-27)-dependent regulatory function, promoted IL-10-mediated T cell tolerance and suppressed autoimmune neuroinflammation.

View Article and Find Full Text PDF

Galectin-1, a member of a family of highly conserved glycan-binding proteins, has emerged as a regulator of immune cell tolerance and homeostasis. This endogenous lectin widely expressed at sites of inflammation and tumour growth, has been postulated as an attractive immunosuppressive agent to restore immune cell tolerance and homeostasis in autoimmune and inflammatory settings. On the other hand, galectin-1 contributes to different steps of tumour progression including cell adhesion, migration and tumour-immune escape, suggesting that blockade of galectin-1 might result in therapeutic benefits in cancer.

View Article and Find Full Text PDF

A successful pregnancy requires synchronized adaptation of maternal immune-endocrine mechanisms to the fetus. Here we show that galectin-1 (Gal-1), an immunoregulatory glycan-binding protein, has a pivotal role in conferring fetomaternal tolerance. Consistently with a marked decrease in Gal-1 expression during failing pregnancies, Gal-1-deficient (Lgals1-/-) mice showed higher rates of fetal loss compared to wild-type mice in allogeneic matings, whereas fetal survival was unaffected in syngeneic matings.

View Article and Find Full Text PDF

Platelet activation is a critical process during inflammation, thrombosis, and cancer. Here, we show that galectin-1, an endogenous lectin with immunoregulatory properties, plays a key role in human platelet activation and function. Galectin-1 binds to human platelets in a carbohydrate-dependent manner and synergizes with ADP or thrombin to induce platelet aggregation and ATP release.

View Article and Find Full Text PDF

Regulated glycosylation controls T cell processes, including activation, differentiation and homing by creating or masking ligands for endogenous lectins. Here we show that stimuli promoting T helper type 1 (TH1), TH2 or interleukin 17-producing T helper (TH-17) differentiation can differentially regulate the glycosylation pattern of T helper cells and modulate their susceptibility to galectin-1, a glycan-binding protein with anti-inflammatory activity. Although TH1- and TH-17-differentiated cells expressed the repertoire of cell surface glycans critical for galectin-1-induced cell death, TH2 cells were protected from galectin-1 through differential sialylation of cell surface glycoproteins.

View Article and Find Full Text PDF

Several families of endogenous glycan-binding proteins have been implicated in a wide variety of immunological functions including first-line defence against pathogens, cell trafficking, and immune regulation. These include, among others, the C-type lectins (collectins, selectins, mannose receptor, and others), S-type lectins (galectins), I-type lectins (siglecs and others), P-type lectins (phosphomannosyl receptors), pentraxins, and tachylectins. This review will concentrate on the immunoregulatory roles of galectins (particularly galectin-1) and collectins (mannose-binding lectins and surfactant proteins) to illustrate the ability of endogenous glycan-binding proteins to act as cytokines, chemokines or growth factors, and thereby modulating innate and adaptive immune responses under physiological or pathological conditions.

View Article and Find Full Text PDF

Several environmental factors can differentially regulate monocyte and macrophage response patterns, resulting in the display of distinct functional phenotypes. Galectin-1, an endogenous lectin found at peripheral lymphoid organs and inflammatory sites, has shown immunoregulatory activity in vivo in experimental models of autoimmunity and cancer. Whereas compelling evidence has been accumulated regarding the effects of galectin-1 on T cell fate, limited information is available on how galectin-1 may impact other immune cell types.

View Article and Find Full Text PDF

Recent evidence indicates that protein-glycan interactions play a critical role in different events associated with the physiology of T-cell responses including thymocyte maturation, T-cell activation, lymphocyte migration and T-cell apoptosis. Glycans decorating T-cell surface glycoproteins can modulate T-cell physiology by specifically interacting with endogenous lectins including selectins and galectins. These endogenous lectins are capable of recognizing sugar structures localized on T-cell surface glycoproteins and trigger different signal transduction pathways leading to differentiation, proliferation, cell cycle regulation or apoptosis.

View Article and Find Full Text PDF

Protein-glycan interactions control essential immunological processes, including T-cell activation, differentiation and survival. Galectins, carbohydrate-binding proteins, defined by shared consensus amino acid sequences and affinity for beta-galactose-containing oligosaccharides, participate in a wide spectrum of immunological processes. These carbohydrate-binding proteins regulate the development of pathogenic T-cell responses by influencing T-cell survival, activation and cytokine secretion.

View Article and Find Full Text PDF

Intraocular inflammatory diseases are a common cause of severe visual impairment and blindness. In this study, we investigated the immunoregulatory role of galectin-1 (Gal-1), an endogenous lectin found at sites of T cell activation and immune privilege, in experimental autoimmune uveitis (EAU), a Th1-mediated model of retinal disease. Treatment with rGal-1 either early or late during the course of interphotoreceptor retinoid-binding protein-induced EAU was sufficient to suppress ocular pathology, inhibit leukocyte infiltration, and counteract pathogenic Th1 cells.

View Article and Find Full Text PDF

Purpose: Galectin (Gal)-1, an endogenous lectin found at sites of immune privilege, plays a critical role in the regulation of the immune response. Therapeutic administration of Gal-1 or its genetic delivery suppresses chronic inflammation in experimental models of autoimmunity. The purpose of this work was to investigate the occurrence of circulating anti-Gal-1 antibodies in patients with autoimmune and infectious uveitis as potential determinant factors of disease progression.

View Article and Find Full Text PDF

Galectins, a family of structurally related carbohydrate-binding proteins, contribute to different events associated with cancer biology, including apoptosis, homotypic cell aggregation, angiogenesis and tumor-immune escape. To interfere with galectin-carbohydrate interactions during tumor progression, a current challenge is the design of specific galectin inhibitors for therapeutic purposes. Here, we report the synthesis of three novel low molecular weight synthetic lactulose amines (SLA): (1) N-lactulose-octamethylenediamine (LDO), (2) N,N'-dilactulose-octamethylenediamine (D-LDO), and (3) N,N'-dilactulose-dodecamethylenediamine (D-LDD).

View Article and Find Full Text PDF

Reactive oxygen and nitrogen species have been implicated in the pathogenesis of pulmonary diseases. The goal of this study was to measure the response of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 enzymes (COX-2) in lung with moderate zinc deficiency. Adult male Wistar rats were divided into two groups receiving (1) a zinc-deficient diet (ZD) or (2) a zinc-adequate control diet.

View Article and Find Full Text PDF

Galectins have emerged as a novel family of immunoregulatory proteins implicated in T cell homeostasis. Recent studies showed that galectin-1 (Gal-1) plays a key role in tumor-immune escape by killing antitumor effector T cells. Here we found that Gal-1 sensitizes human resting T cells to Fas (CD95)/caspase-8-mediated cell death.

View Article and Find Full Text PDF