Publications by authors named "Germain-Lee E"

Heterotopic ossifications (HOs) are the pathologic process by which bone inappropriately forms outside of the skeletal system. Despite HOs being a persistent clinical problem in the general population, there are no definitive strategies for their prevention and treatment due to a limited understanding of the cellular and molecular mechanisms contributing to lesion development. One disease in which the development of heterotopic subcutaneous ossifications (SCOs) leads to morbidity is Albright hereditary osteodystrophy (AHO).

View Article and Find Full Text PDF

Background: Albright hereditary osteodystrophy (AHO) is caused by heterozygous inactivating mutations in GNAS. Patients with maternally-inherited mutations develop pseudohypoparathyroidism type 1A (PHP1A) with multi-hormone resistance and aberrant craniofacial and skeletal development among other abnormalities. Chiari malformation type 1 (CM1), a condition in which brain tissue extends into the spinal canal when the skull is too small, has been reported in isolated cases of PHP1A.

View Article and Find Full Text PDF

Endoplasmic reticulum (ER) stress contributes to pancreatic beta-cell apoptosis in diabetes, but the factors involved are still not fully elucidated. Growth differentiation factor 15 (GDF15) is a stress response gene and has been reported to be increased and play an important role in various diseases. However, the role of GDF15 in beta cells in the context of ER stress and diabetes is still unclear.

View Article and Find Full Text PDF

Background: Myostatin (MSTN) is a transforming growth factor-ß superfamily member that acts as a major regulator of skeletal muscle mass. GDF-11, which is highly related to MSTN, plays multiple roles during embryonic development, including regulating development of the axial skeleton, kidneys, nervous system, and pancreas. As MSTN and GDF-11 share a high degree of amino acid sequence identity, behave virtually identically in cell culture assays, and utilize similar regulatory and signaling components, a critical question is whether their distinct biological functions result from inherent differences in their abilities to interact with specific regulatory and signaling components or whether their distinct biological functions mainly reflect their differing temporal and spatial patterns of expression.

View Article and Find Full Text PDF

Purpose Of Review: This review highlights the impact of Gnas inactivation on both bone remodeling and the development of heterotopic subcutaneous ossifications in Albright hereditary osteodystrophy (AHO). Here we discuss recent advancements in understanding the pathophysiologic mechanisms of the aberrant bone development in AHO as well as potential translational implications.

Recent Findings: Gnas inactivation can regulate the differentiation and function of not only osteoblasts but also osteoclasts and osteocytes.

View Article and Find Full Text PDF

Albright hereditary osteodystrophy (AHO) is caused by heterozygous inactivation of , a complex locus that encodes the alpha-stimulatory subunit of heterotrimeric G proteins (Gsα) in addition to and α due to alternative first exons. AHO skeletal manifestations include brachydactyly, brachymetacarpia, compromised adult stature, and subcutaneous ossifications. AHO patients with maternally-inherited mutations develop pseudohypoparathyroidism type 1A (PHP1A) with resistance to multiple hormones that mediate their actions through G protein-coupled receptors (GPCRs) requiring Gsα (eg, parathyroid hormone [PTH], thyroid-stimulating hormone [TSH], growth hormone-releasing hormone [GHRH], calcitonin) and severe obesity.

View Article and Find Full Text PDF

Skeletal muscle and bone homeostasis are regulated by members of the myostatin/GDF-11/activin branch of the transforming growth factor-β superfamily, which share many regulatory components, including inhibitory extracellular binding proteins and receptors that mediate signaling. Here, we present the results of genetic studies demonstrating a critical role for the binding protein follistatin (FST) in regulating both skeletal muscle and bone. Using an allelic series corresponding to varying expression levels of endogenous , we show that FST acts in an exquisitely dose-dependent manner to regulate both muscle mass and bone density.

View Article and Find Full Text PDF

Myostatin (MSTN) is a transforming growth factor-β (TGF-β) family member that normally acts to limit muscle growth. The function of MSTN is partially redundant with that of another TGF-β family member, activin A. MSTN and activin A are capable of signaling through a complex of type II and type I receptors.

View Article and Find Full Text PDF

Among the physiological consequences of extended spaceflight are loss of skeletal muscle and bone mass. One signaling pathway that plays an important role in maintaining muscle and bone homeostasis is that regulated by the secreted signaling proteins, myostatin (MSTN) and activin A. Here, we used both genetic and pharmacological approaches to investigate the effect of targeting MSTN/activin A signaling in mice that were sent to the International Space Station.

View Article and Find Full Text PDF

Background: Acrodyostosis type 1 (ACRDYS1) is a rare skeletal dysplasia, and sometimes it can be misdiagnosed as pseudohypoparathyroidism type 1A (PHP1A), a subtype of Albright hereditary osteodystrophy (AHO), due to overlapping features. Growth hormone releasing hormone (GHRH) resistance with severe short stature is common in both ACRDYS1 and PHP1A (Emily L. Germain-Lee, et al.

View Article and Find Full Text PDF

Patients affected by pseudohypoparathyroidism (PHP) or related disorders are characterized by physical findings that may include brachydactyly, a short stature, a stocky build, early-onset obesity, ectopic ossifications, and neurodevelopmental deficits, as well as hormonal resistance most prominently to parathyroid hormone (PTH). In addition to these alterations, patients may develop other hormonal resistances, leading to overt or subclinical hypothyroidism, hypogonadism and growth hormone (GH) deficiency, impaired growth without measurable evidence for hormonal abnormalities, type 2 diabetes, and skeletal issues with potentially severe limitation of mobility. PHP and related disorders are primarily clinical diagnoses.

View Article and Find Full Text PDF

Background: Progressive Familial Intrahepatic Cholestasis Type 2 (PFIC2) is a rare congenital cholestatic liver disease that progresses to end stage liver disease. It is associated with fat soluble vitamin D deficiency rickets and severe dyslipidemia; however, treatment of these secondary effects remains a challenge.

Case Presentation: One year old twin males born to a mother with intrahepatic cholestasis during pregnancy presented with jaundice, pruritus and failure to thrive.

View Article and Find Full Text PDF

Purpose Of Review: This review is timely given the 2018 publication of the first international Consensus Statement for the diagnosis and management of pseudohypoparathyroidism (PHP) and related disorders. The purpose of this review is to provide the knowledge needed to recognize and manage PHP1A, pseudopseudohypoparathyroidism (PPHP) and PHP1B - the most common of the subtypes - with an overview of the entire spectrum and to provide a concise summary of management for clinical use. This review will draw from recent literature as well as personal experience in evaluating hundreds of children and adults with PHP.

View Article and Find Full Text PDF

This Consensus Statement covers recommendations for the diagnosis and management of patients with pseudohypoparathyroidism (PHP) and related disorders, which comprise metabolic disorders characterized by physical findings that variably include short bones, short stature, a stocky build, early-onset obesity and ectopic ossifications, as well as endocrine defects that often include resistance to parathyroid hormone (PTH) and TSH. The presentation and severity of PHP and its related disorders vary between affected individuals with considerable clinical and molecular overlap between the different types. A specific diagnosis is often delayed owing to lack of recognition of the syndrome and associated features.

View Article and Find Full Text PDF

Context: Albright hereditary osteodystrophy (AHO) is caused by heterozygous inactivating mutations in GNAS. Depending on the parental origin of the mutated allele, patients develop either pseudohypoparathyroidism type 1A (PHP1A), with multihormone resistance and severe obesity, or pseudopseudohypoparathyroidism (PPHP), without hormonal abnormalities or marked obesity. Subcutaneous ossifications (SCOs) are a source of substantial morbidity in both PHP1A and PPHP.

View Article and Find Full Text PDF

Bone and skeletal muscle mass are highly correlated in mammals, suggesting the existence of common anabolic signaling networks that coordinate the development of these two anatomically adjacent tissues. The activin signaling pathway is an attractive candidate to fulfill such a role. Here, we generated mice with conditional deletion of activin receptor (ACVR) type 2A, ACVR2B, or both, in osteoblasts, to determine the contribution of activin receptor signaling in regulating bone mass.

View Article and Find Full Text PDF

Immune modulators used to treat rheumatologic disease have diverse endocrine effects in patients with diabetes. Providers should be aware of these effects given that diabetes and rheumatologic disease overlap in prevalence and cardiovascular morbidity. In patients with type 1 diabetes, clinical trials have demonstrated that immune modulators used early in the disease can improve pancreatic function, though their efficacy in adults with longstanding autoimmune diabetes is unknown.

View Article and Find Full Text PDF

Background: There is strikingly limited information on linear growth and weight in the different types of osteogenesis imperfecta (OI). Here, we define growth patterns further with the intent of implementing appropriate adaptations proactively.

Methods: We report cross-sectional anthropometric data for 343 subjects with different OI types (144 children, 199 adults).

View Article and Find Full Text PDF

Osteogenesis imperfecta (OI) comprises a group of heritable connective tissue disorders generally defined by recurrent fractures, low bone mass, short stature and skeletal fragility. Beyond the skeletal complications of OI, many patients also report intolerance to physical activity, fatigue and muscle weakness. Indeed, recent studies have demonstrated that skeletal muscle is also negatively affected by OI, both directly and indirectly.

View Article and Find Full Text PDF

Introduction: Progressive osseous heteroplasia (POH) is a condition of invasive heterotopic ossification. Reports of patients with mild POH with Albright hereditary osteodystrophy (AHO), specifically pseudohypoparathyroidism type Ia (PHP Ia) with hormonal resistance, suggest the possibility of a common molecular basis. GNAS has been implicated to account for overlapping features of POH and PHP Ia.

View Article and Find Full Text PDF

Incontinentia pigmenti is an X-linked dominant disorder resulting from a mutation of IKBKG. This disorder has a classic dermatologic presentation, but neurologic involvement, with seizures and cortical infarction, can arise shortly after birth. There are no specific therapies available for the manifestations of incontinentia pigmenti.

View Article and Find Full Text PDF

Metformin is a first-line, anti-diabetic agent prescribed to over 150 million people worldwide. The main effect of metformin is to suppress glucose production in the liver; however, there is no reliable biomarker to assess the effectiveness of metformin administration. Our previous studies have shown that phosphorylation of CBP at S436 is important for the regulation of hepatic glucose production by metformin.

View Article and Find Full Text PDF

Context: Disruption of the Gsα maternal allele leads to severe obesity and insulin resistance in mice and early-onset obesity in patients with pseudohypoparathyroidism (PHP) type 1a. However, insulin resistance and glucose metabolism have not been systematically characterized in patients with PHP1a.

Objective, Design, And Setting: In a cross-sectional, case-control study, we examined insulin sensitivity, β-cell function, energy expenditure (EE), and sympathetic nervous system activity in adults with PHP1a.

View Article and Find Full Text PDF

Sturge-Weber syndrome has been found to result in hypothalamic-pituitary dysfunction including central hypothyroidism. Because central hypothyroidism is more prevalent in Sturge-Weber syndrome than in the general population, we routinely evaluated thyroid function. Here we describe 5 children with Sturge-Weber syndrome on anticonvulsants and diagnosed with hypothyroidism based on thyroid function testing.

View Article and Find Full Text PDF