Publications by authors named "Germain U Busto"

Our study aimed at detecting a potential cumulative effect of subsequent concussions on the neural activation patterns of young rugby athletes with or without concussion history. Event-related brain potential (ERP) data from 24 rugby players, 22-year-old on average, were retrospectively examined. All underwent a Sport Concussion Assessment Tool (SCAT2) during preseason and an on-site ERP task (P300) following a recent concussion event (<48 hours).

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) is a complex neurodegenerative disorder with β-amyloid pathology as a key underlying process. The relevance of cerebrospinal fluid (CSF) and brain imaging biomarkers is validated in clinical practice for early diagnosis. Yet, their cost and perceived invasiveness are a limitation for large-scale implementation.

View Article and Find Full Text PDF

Alzheimer's Disease (AD) is a multifactorial and complex neurodegenerative disorder. Some modifiable risk factors have been associated with an increased risk of appearance of the disease and/or cognitive decline. Preventive clinical trials aiming at reducing one or combined risk factors have been implemented and their potential effects assessed on cognitive trajectories and on AD biomarkers.

View Article and Find Full Text PDF

Huntington's disease is a progressive autosomal dominant neurodegenerative disorder caused by the expansion of a polyglutamine tract at the N-terminus of a large cytoplasmic protein. The Drosophila huntingtin (htt) gene is widely expressed during all developmental stages from embryos to adults. However, Drosophila htt mutant individuals are viable with no obvious developmental defects.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) fine tune gene expression to regulate many aspects of nervous system physiology. Here, we show that suppresses memory consolidation that occurs in the αβ and γ mushroom body neurons (MBns) of , making a memory suppressor miRNA. Bioinformatics analyses suggested that mRNAs encoding kinesin heavy chain 73 (KHC73), a protein that belongs to Kinesin-3 family of anterograde motor proteins, may be a functional target of Behavioral studies that employed expression of with and without its 3' untranslated region (UTR) containing target sites, luciferase assays in HEK cells with reporters containing wild-type and mutant target sequences in the 3'UTR, and immunohistochemistry experiments involving KHC73 expression with and without the wild-type 3'UTR, all point to the conclusion that is a major target of in its functional role as a miRNA memory suppressor gene.

View Article and Find Full Text PDF

MicroRNAs (miRs) are small non-coding RNAs that regulate protein expression through post-transcriptional mechanisms. They participate in broad aspects of biology from the control of developmental processes to tumorigenesis. Recent studies in Drosophila show that they also regulate activity-dependent and sensory-specific protein expression and support olfactory memory formation.

View Article and Find Full Text PDF

MicroRNAs are small non-coding RNAs that inhibit protein expression post-transcriptionally. They have been implicated in many different physiological processes, but little is known about their individual involvement in learning and memory. We recently identified several miRNAs that either increased or decreased intermediate-term memory when inhibited in the central nervous system, including miR-iab8-3p.

View Article and Find Full Text PDF

MicroRNAs have been associated with many different biological functions, but little is known about their roles in conditioned behavior. We demonstrate that Drosophila miR-980 is a memory suppressor gene functioning in multiple regions of the adult brain. Memory acquisition and stability were both increased by miR-980 inhibition.

View Article and Find Full Text PDF

microRNAs (miRNAs) are small noncoding RNAs that regulate gene expression post-transcriptionally. Prior studies have shown that they regulate numerous physiological processes critical for normal development, cellular growth control, and organismal behavior. Here, we systematically surveyed 134 different miRNAs for roles in olfactory learning and memory formation using "sponge" technology to titrate their activity broadly in the Drosophila melanogaster central nervous system.

View Article and Find Full Text PDF

Wnt signaling regulates synaptic plasticity and neurogenesis in the adult nervous system, suggesting a potential role in behavioral processes. Here, we probed the requirement for Wnt signaling during olfactory memory formation in Drosophila using an inducible RNAi approach. Interfering with β-catenin expression in adult mushroom body neurons specifically impaired long-term memory (LTM) without altering short-term memory.

View Article and Find Full Text PDF

Studies of olfactory learning in Drosophila have provided key insights into the brain mechanisms underlying learning and memory. One type of olfactory learning, olfactory classical conditioning, consists of learning the contingency between an odor with an aversive or appetitive stimulus. This conditioning requires the activity of molecules that can integrate the two types of sensory information, the odorant as the conditioned stimulus and the aversive or appetitive stimulus as the unconditioned stimulus, in brain regions where the neural pathways for the two stimuli intersect.

View Article and Find Full Text PDF

Behavioral and physiological evidence indicates that odor processing in the main olfactory bulb is influenced by olfactory experience. At the cellular level, changes in inhibitory influence exerted by granular interneurons may contribute to restructuring odor representations. To assess experience-dependent modulation in the responsiveness of granule cells, we measured the level and spatial distribution of odor-induced expression of the immediate-early gene Zif268 in the granule cell layer of adult mice submitted or not to olfactory discrimination conditioning.

View Article and Find Full Text PDF