Unlabelled: cAMP plays an important role as a second messenger in the stage transition of various protozoan parasites. This signaling pathway relies on multiple effectors, such as protein kinase A (PKA), exchange protein activated by cAMP, and cAMP-response element binding protein transcription factors, to initiate signal transduction in humans. The genome only contains two adenylate cyclases (ACs), a single phosphodiesterase (PDE) and a single known PKA effector, and the specific functions of these components are not fully understood.
View Article and Find Full Text PDFProtozoan parasites use cAMP signaling to precisely regulate the place and time of developmental differentiation, yet it is unclear how this signaling is initiated. Encystation of the intestinal parasite Giardia lamblia can be activated by multiple stimuli, which we hypothesize result in a common physiological change. We demonstrate that bile alters plasma membrane fluidity by reducing cholesterol-rich lipid microdomains, while alkaline pH enhances bile function.
View Article and Find Full Text PDFProtozoan parasites use cAMP signaling to precisely regulate the place and time of developmental differentiation, yet it is unclear how this signaling is initiated. Encystation of the intestinal parasite can be activated by multiple stimuli, which we hypothesize result in a common physiological change. We demonstrate that bile alters plasma membrane fluidity by reducing cholesterol-rich lipid microdomains, while alkaline pH enhances bile function.
View Article and Find Full Text PDFProtozoan parasites use cAMP signaling to precisely regulate the place and time of developmental differentiation, yet it is unclear how this signaling is initiated. Encystation of the intestinal parasite can be activated by multiple stimuli, which we hypothesize result in a common physiological change. We demonstrate that bile alters plasma membrane fluidity by reducing cholesterol-rich lipid microdomains, while alkaline pH enhances bile function.
View Article and Find Full Text PDFTranscriptional regulation of differentiation is critical for parasitic pathogens to adapt to environmental changes and regulate transmission. In response to encystation stimuli, Giardia lamblia shifts the distribution of the cell cycle toward G2 and induces the expression of cyst wall proteins (CWPs) within 2 to 4 h, indicating that key regulatory steps occur within the first 4 h of encystation. However, the role of transcription factors (TFs) in encystation has primarily been investigated at later time points.
View Article and Find Full Text PDFAttachment to the intestinal epithelium is critical to the lifestyle of the ubiquitous parasite Giardia lamblia. The ventrolateral flange is a sheet-like membrane protrusion at the interface between parasites and attached surfaces. This structure has been implicated in attachment, but its role has been poorly defined.
View Article and Find Full Text PDFDifferentiation into environmentally resistant cysts is required for transmission of the ubiquitous intestinal parasite . Encystation in requires the production, processing and transport of Cyst Wall Proteins (CWPs) in developmentally induced, Golgi-like, Encystation Specific Vesicles (ESVs). Progress through this trafficking pathway can be followed by tracking CWP localization over time.
View Article and Find Full Text PDFhas 198 Nek kinases whereas humans have only 11. has a complex microtubule cytoskeleton that includes eight flagella and several unique microtubule arrays that are utilized for parasite attachment and facilitation of rapid mitosis and cytokinesis. The need to regulate these structures may explain the parallel expansion of the number of Nek family kinases.
View Article and Find Full Text PDFRecently developed tissue-hydrogel methods for specimen expansion now enable researchers to perform super-resolution microscopy with ∼65 nm lateral resolution using ordinary microscopes, standard fluorescent probes, and inexpensive reagents. Here we use the combination of specimen expansion and the optical super-resolution microscopy technique structured illumination microscopy (SIM) to extend the spatial resolution to ∼30 nm. We apply this hybrid method, which we call ExSIM, to study the cytoskeleton of the important human pathogen Giardia lamblia including the adhesive disc and flagellar axonemes.
View Article and Find Full Text PDFThe phosphoserine/phosphothreonine-binding protein 14-3-3 is known to regulate actin; this function has been previously attributed to sequestration of phosphorylated cofilin. 14-3-3 was identified as an actin-associated protein in the deep-branching eukaryote ; however, lacks cofilin and all other canonical actin-binding proteins (ABPs). Thus, the role of 14-3-3 (Gl14-3-3) in actin regulation was unknown.
View Article and Find Full Text PDFDevoid of all known canonical actin-binding proteins, the prevalent parasite uses an alternative mechanism for cytokinesis. Unique aspects of this mechanism can potentially be leveraged for therapeutic development. Here, live-cell imaging methods were developed for to establish division kinetics and the core division machinery.
View Article and Find Full Text PDF