Background: Phosphoinositides play a central role in regulating processes at intracellular membranes. In yeast, a large number of phospholipid biosynthetic enzymes use a common mechanism for transcriptional regulation. Yet, how the expression of genes encoding lipid kinases and phosphatases is regulated remains unknown.
View Article and Find Full Text PDFCompartment-specific control of phosphoinositide lipids is essential for cell function. The Sac1 lipid phosphatase regulates endoplasmic reticulum (ER) and Golgi phosphatidylinositol-4-phosphate [PI(4)P] in response to nutrient levels and cell growth stages. During exponential growth, Sac1p interacts with Dpm1p at the ER but shuttles to the Golgi during starvation.
View Article and Find Full Text PDFThe integral membrane lipid phosphatase Sac1p regulates local pools of phosphatidylinositol-4-phosphate (PtdIns(4)P) at endoplasmic reticulum (ER) and Golgi membranes. PtdIns(4)P is important for Golgi trafficking, yet the significance of PtdIns(4)P for ER function is unknown. It also remains unknown how localization of Sac1p to distinct organellar membranes is mediated.
View Article and Find Full Text PDFThe Saccharomyces cerevisiae SAC1 gene encodes an integral membrane protein of the endoplasmic reticulum (ER) and the Golgi apparatus. Yeast SAC1 mutants display a wide array of phenotypes including inositol auxotrophy, cold sensitivity, secretory defects, disturbed ATP transport into the ER, or suppression of actin gene mutations. At present, it is not clear how these phenotypes relate to the finding that SAC1 displays polyphosphoinositide phosphatase activity.
View Article and Find Full Text PDFThe yeast phosphoinositide phosphatase Sac1p localizes to endoplasmic reticulum (ER) and Golgi membranes and has compartment-specific functions in these organelles. In this study we analyzed in detail the topology of Sac1p. Our data show that Sac1p is a type II transmembrane protein with a large N-terminal cytosolic domain, which is anchored in the membrane by the two potential transmembrane helices near the C terminus.
View Article and Find Full Text PDF