The peptidyl prolyl cis/trans isomerase (PPIase) Pin1 plays an important role in phosphorylation-dependent events of the cell cycle. This function is linked to its display of two phosphothreonine/phosphoserine-proline binding motifs, one within the type IV WW domain and a second within the parvulin-like catalytic domain. By microinjection of the compound Ac-Phe-D-Thr(PO3H2)-Pip-Nal-Gln-NH2, which inhibits Xenopus laevis Pin1 with a Ki value of 19.
View Article and Find Full Text PDFThe peptidyl prolyl cis/trans isomerase Pin1 has been implicated in the development of cancer, Alzheimer's disease and asthma, but highly specific and potent Pin1 inhibitors remain to be identified. Here, by screening a combinatorial peptide library, we identified a series of nanomolar peptidic inhibitors. Nonproteinogenic amino acids, incorporated into 5-mer to 8-mer oligopeptides containing a d-phosphothreonine as a central template, yielded selective inhibitors that blocked cell cycle progression in HeLa cells in a dose-dependent manner.
View Article and Find Full Text PDFIn Escherichia coli, protein folding is undertaken by three distinct sets of chaperones, the DnaK-DnaJ and GroEL-GroES systems and the trigger factor (TF). TF has been proposed to be the first chaperone to interact with the nascent polypeptide chain as it emerges from the tunnel of the 70S ribosome and thus probably plays an important role in co-translational protein folding. We have made complexes with deuterated ribosomes (50S subunits and 70S ribosomes) and protated TF and determined the TF binding site on the respective complexes using the neutron scattering technique of spin-contrast variation.
View Article and Find Full Text PDF