Sensing of the interaction forces at fingertips is of great value in assessment and rehabilitation therapy. Current force sensors are not compliant to the fingertip tissue and result in loss of touch sensation of the user. This work shows the development and characterization of a flexible fully-3D-printed piezoresistive shear and normal force sensor that uses the mechanical deformation of the finger tissue.
View Article and Find Full Text PDFUpper-limb impairments are all-pervasive in Activities of Daily Living (ADLs). As a consequence, people affected by a loss of arm function must endure severe limitations. To compensate for the lack of a functional arm and hand, we developed a wearable system that combines different assistive technologies including sensing, haptics, orthotics and robotics.
View Article and Find Full Text PDFBackground: Stroke is one of the main causes of disability in the world, causing loss of motor function on mainly one side of the body. A proper assessment of motor function is required to help to direct and evaluate therapy. Assessment is currently performed by therapists using observer-based standardized clinical assessment protocols.
View Article and Find Full Text PDFThe golden standard for measuring nocturnal erections is the RigiScan Plus. It is a relatively big and uncomfortable device dating from the previous century. The aim of this perspective is to conceptualize a user-friendly sensor that can be used at home for monitoring nocturnal erections.
View Article and Find Full Text PDFPrecise and objective assessments of upper limb movement quality after strokes in functional task conditions are an important prerequisite to improve understanding of the pathophysiology of movement deficits and to prove the effectiveness of interventions. Herein, a wearable inertial sensing system was used to capture movements from the fingers to the trunk in 10 chronic stroke subjects when performing reach-to-grasp activities with the affected and non-affected upper limb. It was investigated whether the factors, tested arm, object weight, and target height, affect the expressions of range of motion in trunk compensation and flexion-extension of the elbow, wrist, and finger during object displacement.
View Article and Find Full Text PDF3D printing of soft EMG sensing structures enables the creation of personalized sensing structures that can be potentially integrated in prosthetic, assistive and other devices. We developed and characterized flexible carbon-black doped TPU-based sEMG sensing structures. The structures are directly 3D-printed without the need for an additional post-processing step using a low-cost, consumer grade multi-material FDM printer.
View Article and Find Full Text PDF