Publications by authors named "Gerhardus J De Jong"

In the field of metabolomics, CE-MS is now recognized as a strong analytical technique for the analysis of (highly) polar and charged metabolites in a wide range of biological samples. Over the past few years, significant attention has been paid to the design and improvement of CE-MS approaches for (large-scale) metabolic profiling studies and for establishing protocols in order to further expand the role of CE-MS in metabolomics. In this paper, which is a follow-up of a previous review paper covering the years 2014-2016 (Electrophoresis 2017, 38, 190-202), main advances in CE-MS approaches for metabolomics studies are outlined covering the literature from July 2016 to June 2018.

View Article and Find Full Text PDF

The potential of capillary electrophoresis (CE) with ultraviolet (UV)-excited fluorescence detection for sensitive chiral analysis of amino acids (AAs) was investigated. DL-AAs were derivatized with 9-fluorenylmethoxycarbonyl chloride (FMOC)-Cl to allow their fluorescence detection and enhance enantioseparation. Fluorescence detection was achieved employing optical fibers, leading UV excitation light (< 300 nm) from a Xe-Hg lamp to the capillary window, and fluorescence emission to a spectrograph equipped with a charge-coupled device (CCD).

View Article and Find Full Text PDF

Chiral analysis of dl-amino acids was achieved by micellar electrokinetic chromatography coupled with UV-excited fluorescence detection. The fluorescent reagent (+)-1-(9-fluorenyl)ethyl chloroformate was employed as chiral amino acid derivatizing agent and sodium dodecyl sulfate served as pseudo-stationary phase for separating the formed amino acid diastereomers. Sensitive analysis of (+)-1-(9-fluorenyl)ethyl chloroformate-amino acids was achieved applying a xenon-mercury lamp for ultraviolet excitation, and a spectrograph and charge-coupled device for wavelength-resolved emission detection.

View Article and Find Full Text PDF

The on-line coupling of micellar electrokinetic chromatography and mass spectrometry (MEKC-MS) is often hampered by incompatibility problems leading to reduced separation performance and unfavorable limits of detection (LODs). Here we propose a new selective and highly sensitive MEKC-MS/MS method employing a sheathless porous-tip interface in combination with a micellar phase comprised of semi-volatile surfactant molecules. Carbamate pesticides (CRBs) were selected as representative model compounds being neutral toxic pollutants potentially present at trace levels in environmental water samples.

View Article and Find Full Text PDF

Developing tools for the study of protein carbohydrate interactions is an important goal in glycobiology. Cholera toxin inhibition is an interesting target in this context, as its inhibition may help to fight against cholera. For the study of novel ligands an affinity capillary electrophoresis (ACE) method was optimized and applied.

View Article and Find Full Text PDF

CE-MS can be considered a useful analytical technique for the global profiling of (highly) polar and charged metabolites in various samples. Over the past few years, significant advancements have been made in CE-MS approaches for metabolomics studies. In this paper, which is a follow-up of a previous review paper covering the years 2012-2014 (Electrophoresis 2015, 36, 212-224), recent CE-MS strategies developed for metabolomics covering the literature from July 2014 to June 2016 are outlined.

View Article and Find Full Text PDF

d-Amino acids (AAs) are increasingly being recognized as essential molecules in biological systems. Enantioselective analysis of proteinogenic AAs in biological samples was accomplished by CE-MS employing β-CD as chiral selector and ESI via sheath-liquid (SL) interfacing. Prior to analysis, AAs were fully derivatized with FMOC, improving AA-enantiomer separation and ESI efficiency.

View Article and Find Full Text PDF

An overview of the design and application of coupled solid-phase extraction-capillary electrophoresis (SPE-CE) systems reported in the literature between July 2013 and June 2015 is provided in this paper. The present article is a continuation of our previous review papers on this topic which covered the time period 2000-2013 (Electrophoresis 2008, 29, 108-128; Electrophoresis 2010, 31, 44-54; Electrophoresis 2012, 33, 243-250; Electrophoresis 2014, 35, 128-137). The use of in-line and on-line SPE-CE approaches is treated and outlined in this review.

View Article and Find Full Text PDF

In order to assess the utility of a recently developed capillary electrophoresis-mass spectrometry (CE-MS) method for the study of anionic metabolites in urine, a comparison was made with hydrophilic interaction chromatography-MS (HILIC-MS) using negative electrospray ionization. After optimization of the HILIC conditions, a gradient employing 10mM ammonium acetate (pH 6.8) in acetonitrile-water (5 min 90% acetonitrile followed by 90%-50% acetonitrile in 10 min) was selected, providing baseline separation of five representative anionic test metabolites.

View Article and Find Full Text PDF

In the field of metabolomics, CE-MS is now regarded as a useful complementary analytical technique for the profiling of (highly) polar ionogenic metabolites in biological samples. Over the past few years, significant advancements have been made in CE-MS approaches for metabolic profiling studies. This paper, which is a follow-up of three previous review papers covering the years 2000-2012 [Electrophoresis 2009, 30, 276-291; Electrophoresis 2011, 32, 52-65; Electrophoresis 2013, 34, 86-98], provides an update of these developments covering the scientific literature from July 2012 to June 2014.

View Article and Find Full Text PDF

An original micellar electrokinetic chromatography (MEKC) method using in-capillary derivatization with a chiral labeling reagent was developed for the separation of amino acid (AA) derivatives. The potential of (-)-1-(9-fluorenyl)-ethyl chloroformate (FLEC) as in-capillary derivatization agent is described for the first time. Several parameters for in-capillary derivatization and subsequent MEKC separation were systematically investigated using experimental designs.

View Article and Find Full Text PDF

Fritless SPE on-line coupled to CE with UV and MS detection (SPE-CE-UV and SPE-CE-MS) was evaluated for the analysis of opioid peptides. A microcartridge of 150 μm id was packed with a C18 sorbent (particle size > 50 μm), which was retained between a short inlet capillary and a separation capillary (50 μm id). Several experimental parameters were optimized by SPE-CE-UV using solutions of dynorphin A (DynA), endomorphin 1 (End1), and methionine-enkephaline (Met).

View Article and Find Full Text PDF

Metabolomics is the comprehensive analysis of low molecular weight compounds in biological samples such as cells, body fluids and tissues. Comprehensive profiling of metabolites in complex sample matrices with the current analytical toolbox remains a huge challenge. Over the past few years, liquid chromatography-mass spectrometry (LC-MS) and capillary electrophoresis-mass spectrometry (CE-MS) have emerged as powerful complementary analytical techniques in the field of metabolomics.

View Article and Find Full Text PDF

Drug purity and affinity are essential attributes during development and production of therapeutic proteins. In this work, capillary electrophoresis (CE) was used to determine both the affinity and composition of the biotechnologically produced "nanobody" EGa1, the binding fragment of a heavy-chain-only antibody. EGa1 is an antagonist of the epidermal growth factor receptor (EGFR), which is overexpressed on the surface of tumor cells.

View Article and Find Full Text PDF

Hydrophilic interaction chromatography-mass spectrometry (HILIC-MS) was used for anionic metabolic profiling of urine from antibiotic-treated rats to study microbial-host co-metabolism. Rats were treated with the antibiotics penicillin G and streptomycin sulfate for four or eight days and compared to a control group. Urine samples were collected at day zero, four and eight, and analyzed by HILIC-MS.

View Article and Find Full Text PDF

A novel fritless solid-phase extraction (SPE) microcartridge was designed for combination with sheathless capillary electrophoresis-mass spectrometry (sheathless CE-MS) employing a prototype porous-tip capillary for nanoelectrospray ionization (nanoESI). The inlet of the separation capillary (30μm inner diameter (id), 150μm outer diameter (od)) was inserted in a 4mm long SPE microcartridge (150μm id, 365μm od) packed with a C18 sorbent of 55-105μm particle size. Performance of the SPE-CE-MS system was evaluated using diluted solutions of the three opioid peptides dynorphin A (1-7) (DynA), endomorphin 1 (End1) and met-enkephalin (Met).

View Article and Find Full Text PDF

This article presents an overview of the design and application of coupled SPE-CE systems that have been reported in the literature between January 2011 and June 2013. The present paper is an update of three previous review papers covering the years 2000-2011 (Electrophoresis 2008, 29, 108-128; Electrophoresis 2010, 31, 44-54; Electrophoresis 2012, 33, 243-250). The use of in-line and on-line SPE-CE approaches is described in this review.

View Article and Find Full Text PDF

A new MEKC-ESI-MS method for the analysis of amino acids (AAs) in human urine was developed employing ammonium perfluorooctanoate (APFO) as volatile surfactant. The influence of APFO on the MS signal of AAs was evaluated by infusion experiments, which showed that APFO hardly affects analyte responses and presents significantly less ion suppression than equal concentrations of ammonium acetate. In order to obtain efficient separation of AAs, MEKC parameters such as the pH and APFO concentration of the BGE, were optimized.

View Article and Find Full Text PDF

Capillary electrophoresis (CE) with wavelength-resolved fluorescence detection (wrFlu) was evaluated for the study of protein unfolding using non-reduced and reduced β-lactoglobulin B (β-LGB) as model compounds. Protein unfolding was achieved by incubation in sodium phosphate (pH 3.0) containing increasing concentrations of urea (0-7.

View Article and Find Full Text PDF

This review treats the coupling of capillary electrophoresis (CE) with fluorescence detection (Flu) for the analysis of natively fluorescent biomolecular and pharmaceutical compounds. CE-Flu combines the excellent separation efficiency of CE with the high selectivity and sensitivity of Flu. In CE-Flu, an appropriate design of the fluorescence detection cell is very important in order to achieve efficient analyte excitation in and emission light collection from the small cylindrically-shaped detection volume.

View Article and Find Full Text PDF

Capillary electrophoresis coupled to time-of-flight mass spectrometry (CE-TOF-MS) via a porous tip sheathless electrospray ionization (ESI) interface was studied for the characterization of pharmaceutical glycoproteins. To achieve optimal glycoform separation, background electrolytes of low pH were used in conjunction with a capillary with a neutral coating exhibiting near-zero electroosmotic flow. Crucial interfacing parameters, like ESI voltage and ESI tip-to-end plate distance, were optimized for very low flow rates (∼5 nL/min) in order to attain maximum sensitivity and stable performance.

View Article and Find Full Text PDF

A recently developed capillary electrophoresis (CE)-negative-ionisation mass spectrometry (MS) method was used to profile anionic metabolites in a microbial-host co-metabolism study. Urine samples from rats receiving antibiotics (penicillin G and streptomycin sulfate) for 0, 4, or 8 days were analysed. A quality control sample was measured repeatedly to monitor the performance of the applied CE-MS method.

View Article and Find Full Text PDF

Since its introduction in 1987, CE-MS has become an increasingly important technique for the analysis of biomolecules. Since our previous update on CE-MS methods within the field of intact protein analysis (Electrophoresis 2011, 32, 66-82), a variety of interesting methodological improvements and applications have been reported in literature. Therefore, this article presents an overview of the development and application of CE-MS for intact protein analysis as published between June 2010 and June 2012.

View Article and Find Full Text PDF

CE-MS has emerged as a powerful technique for the profiling of (highly) polar and charged metabolites in biological samples. This review provides an update of the most recent developments in CE-MS for metabolomics covering the scientific literature from July 2010 to June 2012. The present paper is an update of two previous review papers covering the years 2000-2010 (Electrophoresis 2009, 30, 276-291; Electrophoresis 2011, 32, 52-65).

View Article and Find Full Text PDF

The potential of CE with native fluorescence detection (Flu) for the profiling of the therapeutic protein erythropoietin (EPO) was studied. EPO is a highly heterogeneous glycoprotein comprising a large number of isoforms. CE was applied to induce separation among the various glycoforms.

View Article and Find Full Text PDF