We investigate the use of a frequency-domain reconstruction algorithm based on the nonuniform fast Fourier transform (NUFFT) for photoacoustic imaging (PAI). Standard algorithms based on the fast Fourier transform (FFT) are computationally efficient, but compromise the image quality by artifacts. In our previous work we have developed an algorithm for PAI based on the NUFFT which is computationally efficient and can reconstruct images with the quality known from temporal backprojection algorithms.
View Article and Find Full Text PDFImaging the full acoustic field around an object by use of an optical phase contrast method is used to accelerate the data acquisition in photoacoustic tomography. Images obtained with a CCD-camera at a certain time show a projection of the instantaneous pressure field in a given direction. In this work a reconstruction method is presented to obtain the two-dimensional initial pressure distribution by back propagating the observed wave pattern in Radon space.
View Article and Find Full Text PDFIEEE Trans Med Imaging
November 2009
Fourier reconstruction algorithms significantly outperform conventional backprojection algorithms in terms of computation time. In photoacoustic imaging, these methods require interpolation in the Fourier space domain, which creates artifacts in reconstructed images. We propose a novel reconstruction algorithm that applies the one-dimensional nonuniform fast Fourier transform to photoacoustic imaging.
View Article and Find Full Text PDF