Drug-resistant bacteria such as methicillin-resistant Staphylococcus aureus (MRSA) are a target for new antimicrobial technologies. Far-UVC technology is an emerging disinfection method that directly kills microorganisms using light. In contrast with conventional UV sterilization, far-UVC light has antimicrobial capabilities without apparent harm to mammalian cells.
View Article and Find Full Text PDFBackground: Prevention of superficial surgical wound infections from drug-resistant bacteria such as methicillin resistant Staphylococcus aureus (MRSA) currently present major health care challenges. The majority of surgical site infections (SSI) are believed to be caused by airborne transmission of bacteria alighting onto the wound during surgical procedures. We have previously shown that far-ultraviolet C light in the wavelength range of 207-222 nm is significantly harmful to bacteria, but without damaging mammalian cells and tissues.
View Article and Find Full Text PDFAirborne-mediated microbial diseases such as influenza and tuberculosis represent major public health challenges. A direct approach to prevent airborne transmission is inactivation of airborne pathogens, and the airborne antimicrobial potential of UVC ultraviolet light has long been established; however, its widespread use in public settings is limited because conventional UVC light sources are both carcinogenic and cataractogenic. By contrast, we have previously shown that far-UVC light (207-222 nm) efficiently inactivates bacteria without harm to exposed mammalian skin.
View Article and Find Full Text PDFRadiat Prot Dosimetry
November 2017
Measurement of ultraviolet (UV) radiation is important for human health, especially with the expanded usage of short wavelength UV for sterilization purposes. This work examines unlaminated Gafchromic EBT3 film for UV radiation monitoring. The authors exposed the film to select wavelengths in the UV spectrum, ranging from 207 to 328 nm, and measured the change in optical density.
View Article and Find Full Text PDFWe have previously shown that 207-nm ultraviolet (UV) light has similar antimicrobial properties as typical germicidal UV light (254 nm), but without inducing mammalian skin damage. The biophysical rationale is based on the limited penetration distance of 207-nm light in biological samples (e.g.
View Article and Find Full Text PDFValidation of biodosimetry assays is normally performed with acute exposures to uniform external photon fields. Realistically, exposure to a radiological dispersal device or reactor leak will include exposure to low dose rates and likely exposure to ingested radionuclides. An improvised nuclear device will likely include a significant neutron component in addition to a mixture of high- and low-dose-rate photons and ingested radionuclides.
View Article and Find Full Text PDFAnatomically accurate phantoms are useful tools for radiation dosimetry studies. In this work, we demonstrate the construction of a new generation of life-like mouse phantoms in which the methods have been generalized to be applicable to the fabrication of any small animal. The mouse phantoms, with built-in density inhomogeneity, exhibit different scattering behavior dependent on where the radiation is delivered.
View Article and Find Full Text PDFBackground: UVC light generated by conventional germicidal lamps is a well-established anti-microbial modality, effective against both bacteria and viruses. However, it is a human health hazard, being both carcinogenic and cataractogenic. Earlier studies showed that single-wavelength far-UVC light (207 nm) generated by excimer lamps kills bacteria without apparent harm to human skin tissue in vitro.
View Article and Find Full Text PDFWe describe here an accelerator-based neutron irradiation facility, intended to expose blood or small animals to neutron fields mimicking those from an improvised nuclear device at relevant distances from the epicenter. Neutrons are generated by a mixed proton/deuteron beam on a thick beryllium target, generating a broad spectrum of neutron energies that match those estimated for the Hiroshima bomb at 1.5 km from ground zero.
View Article and Find Full Text PDFNucl Instrum Methods Phys Res A
September 2015
A novel neutron irradiation facility at the Radiological Research Accelerator Facility (RARAF) has been developed to mimic the neutron radiation from an Improvised Nuclear Device (IND) at relevant distances (e.g. 1.
View Article and Find Full Text PDFA noninvasive, self-referencing biosensor/probe system has been integrated into the Columbia University Radiological Research Accelerator Facility Microbeam II end station. A single-cell oxygen consumption measurement has been conducted with this type of oxygen probe in 37° C Krebs-Ringer Bicarbonate buffer immediately before and after a single-cell microbeam irradiation. It is the first such measurement made for a microbeam irradiation, and a six fold increment of oxygen flux induced during a 15-s period of time has been observed following radiation exposure.
View Article and Find Full Text PDFThe development of, and results from an image analysis system are presented for automated detection and scoring of micronuclei in human peripheral blood lymphocytes. The system is part of the Rapid Automated Biodosimetry Tool, which was developed at the Center for High-Throughput Minimally Invasive Radiation Biodosimetry for rapid radiation dose assessment of many individuals based on single fingerstick samples of blood. Blood lymphocytes were subjected to the cytokinesis-block micronucleus assay and the images of cell cytoplasm and nuclei are analyzed to estimate the frequency of micronuclei in binucleated cells.
View Article and Find Full Text PDFBackground: 0.5% to 10% of clean surgeries result in surgical-site infections, and attempts to reduce this rate have had limited success. Germicidal UV lamps, with a broad wavelength spectrum from 200 to 400 nm are an effective bactericidal option against drug-resistant and drug-sensitive bacteria, but represent a health hazard to patient and staff.
View Article and Find Full Text PDFWe fabricated ultrathin metal-semiconductor Schottky diodes for use as transmission particle detectors in the biological microbeam at Columbia University's Radiological Research Accelerator Facility (RARAF). The RARAF microbeam can deliver a precise dose of ionizing radiation in cell nuclei with sub-micron precision. To ensure an accurate delivery of charged particles, the facility currently uses a commercial charged-particle detector placed after the sample.
View Article and Find Full Text PDFA novel technique for label-free imaging of live biological cells in aqueous medium that is insensitive to ambient vibrations is presented. This technique is a spin-off from previously developed immersion Mirau interferometry. Both approaches utilize a modified Mirau interferometric attachment for a microscope objective that can be used both in air and in immersion mode, when the device is submerged in cell medium and has its internal space filled with liquid.
View Article and Find Full Text PDFSince the 1960s, the Radiological Research Accelerator Facility (RARAF) has been providing researchers in biology, chemistry and physics with advanced irradiation techniques, using charged particles, photons and neutrons.We are currently developing a unique facility at RARAF, to simulate neutron spectra from an improvised nuclear device (IND), based on calculations of the neutron spectrum at 1.5 km from the epicenter of the Hiroshima atom bomb.
View Article and Find Full Text PDFNucl Instrum Methods Phys Res B
September 2011
A soft x-ray microbeam using proton-induced x-ray emission (PIXE) of characteristic titanium (K(α) 4.5 keV) as the x-ray source has been developed at the Radiological Research Accelerator Facility (RARAF) at Columbia University. The proton beam is focused to a 120 μm × 50 μm spot on the titanium target using an electrostatic quadrupole quadruplet previously used for the charged particle microbeam studies at RARAF.
View Article and Find Full Text PDFPurpose: Over the past five years the Center for Minimally Invasive Radiation Biodosimetry at Columbia University has developed the Rapid Automated Biodosimetry Tool (RABiT), a completely automated, ultra-high throughput biodosimetry workstation. This paper describes recent upgrades and reliability testing of the RABiT.
Materials And Methods: The RABiT analyses fingerstick-derived blood samples to estimate past radiation exposure or to identify individuals exposed above or below a cut-off dose.
A novel neutron microbeam is being developed at the Radiological Research Accelerator Facility (RARAF) of Columbia University. The RARAF microbeam facility has been used for studies of radiation bystander effects in mammalian cells for many years. Now a prototype neutron microbeam is being developed that can be used for bystander effect studies.
View Article and Find Full Text PDFProc SPIE Int Soc Opt Eng
February 2010
In cell biology studies it is often important to avoid the damaging effects caused by fluorescent stains or UV-light. Immersion Mirau Interferometry (IMI) is an epi-illumination label-free imaging technique developed at the Columbia University Radiological Research Accelerator Facility. It is based on the principles of phase-shifting interferometry (PSI) and represents a novel approach for interferometric imaging of living cells in medium.
View Article and Find Full Text PDFNucl Instrum Methods Phys Res A
October 2009
A lens system consisting of two electrostatic quadrupole triplets has been designed and constructed at the Radiological Research Accelerator Facility (RARAF) of Columbia University. The lens system has been used to focus 6-MeV (4)He ions to a beam spot in air with a diameter of 0.8 µm.
View Article and Find Full Text PDFIn response to the recognized need for high throughput biodosimetry methods for use after large-scale radiological events, a logical approach is complete automation of standard biodosimetric assays that are currently performed manually. The authors describe progress to date on the RABIT (Rapid Automated BIodosimetry Tool), designed to score micronuclei or gamma-H2AX fluorescence in lymphocytes derived from a single drop of blood from a fingerstick. The RABIT system is designed to be completely automated, from the input of the capillary blood sample into the machine to the output of a dose estimate.
View Article and Find Full Text PDFThe understanding of complex radiation responses in biological systems, such as non-targeted effects as represented by the bystander response, can be enhanced by the use of genetically amenable model organisms. Almost all bystander studies to date have been carried out by using conventional single-cell in vitro systems, which are useful tools to characterize basic cellular and molecular responses. A few studies have been reported in monolayer explants and bystander responses have been also investigated in a three-dimensional normal human tissue system.
View Article and Find Full Text PDF