Most gene therapies exert their actions via manipulation of hepatocytes (parenchymal cells) and the reasons behind the suboptimal performance of synthetic mRNA in non-parenchymal cells (NPC) such as Kupffer cells (KC), and liver macrophages, remain unclear. Here, the spatio-temporal distribution of mRNA encoding enhanced green fluorescent protein (Egfp), siRNA, or both co-encapsulated into lipid nanoparticles (LNP) in the liver in vivo using real-time intravital imaging is investigated. Although both KC and hepatocytes demonstrate comparable high and rapid uptake of mRNA-LNP and siRNA-LNP in vivo, the translation of Egfp mRNA occurs exclusively in hepatocytes during intravital imaging.
View Article and Find Full Text PDFMyeloproliferative neoplasms (MPN) are rare hematologic disorders characterized by clonal hematopoiesis. Familial clustering is observed in a subset of cases, with a notable proportion exhibiting heterozygous germline mutations in DNA double-strand break repair genes (e.g.
View Article and Find Full Text PDFAdvanced in vitro systems such as multicellular spheroids and lab-on-a-chip devices have been developed, but often fall short in reproducing the tissue scale and self-organization of human diseases. A bioprinted artificial tumor model is introduced with endothelial and stromal cells self-organizing into perfusable and functional vascular structures. This model uses 3D hydrogel matrices to embed multicellular tumor spheroids, allowing them to grow to mesoscopic scales and to interact with endothelial cells.
View Article and Find Full Text PDFCellular signaling responses show substantial cell-to-cell heterogeneity, which is often ascribed to the inherent randomness of biochemical reactions, termed molecular noise, wherein high noise implies low signaling fidelity. Alternatively, heterogeneity could arise from differences in molecular content between cells, termed molecular phenotypic variability, which does not necessarily imply imprecise signaling. The contribution of these two processes to signaling heterogeneity is unclear.
View Article and Find Full Text PDFWe show that pro-inflammatory oncostatin M (OSM) is an important regulator of hematopoietic stem cell (HSC) niches in the bone marrow (BM). Treatment of healthy humans and mice with granulocyte colony-stimulating factor (G-CSF) dramatically increases OSM release in blood and BM. Using mice null for the OSM receptor (OSMR) gene, we demonstrate that OSM provides a negative feed-back acting as a brake on HSPC mobilization in response to clinically relevant mobilizing molecules G-CSF and CXCR4 antagonist.
View Article and Find Full Text PDFTo ensure the long-term success of dental implants, a functional attachment of the soft tissue to the surface of the implant abutment is decisively important in order to prevent the penetration of bacteria into the implant-bone interface, which can trigger peri-implant disease. Here a surface modification approach is described that includes the covalent immobilization of the extracellular matrix (ECM) proteins fibronectin and laminin via a crosslinker to silanized Ti6Al4V and Y-TZP surfaces. The surface properties are evaluated using static contact angle, X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM).
View Article and Find Full Text PDFStat5 is of significant interest in the search for new therapeutics for prostate cancer (PC) and hematopoietic disorders. We evaluated the transcriptomic specificity of the Stat5a/b inhibitor IST5-002 (IST5) in PC, defined more closely its mechanisms of action, and investigated the in vivo toxicity of IST5 for further optimization for clinical development. The transcriptomic specificity of IST5 vs.
View Article and Find Full Text PDFSeptic cardiomyopathy is a life-threatening organ dysfunction caused by sepsis. Ribonuclease 1 (RNase 1) belongs to a group of host-defense peptides that specifically cleave extracellular RNA (eRNA). The activity of RNase 1 is inhibited by ribonuclease-inhibitor 1 (RNH1).
View Article and Find Full Text PDFBackground: The use of mesenchymal stromal cells (MSCs) for research and clinical application is hampered by cellular heterogeneity and replicative senescence. Generation of MSC-like cells from induced pluripotent stem cells (iPSCs) may circumvent these limitations, and such iPSC-derived MSCs (iMSCs) are already tested in clinical trials. So far, a comparison of MSCs and iMSCs was particularly addressed in bulk culture.
View Article and Find Full Text PDFSignal transducer and activator of transcription (STAT) proteins are transcription factors that in the latent state are located predominantly in the cytoplasm. Activation of STATs through phosphorylation of a single tyrosine residue results in nuclear translocation. The requirement of tyrosine phosphorylation for nuclear accumulation is shared by all STAT family members but mechanisms of nuclear translocation vary between different STATs.
View Article and Find Full Text PDFThe cellular origins of glomerulosclerosis involve activation of parietal epithelial cells (PECs) and progressive podocyte depletion. While mammalian target of rapamycin-mediated (mTOR-mediated) podocyte hypertrophy is recognized as an important signaling pathway in the context of glomerular disease, the role of podocyte hypertrophy as a compensatory mechanism preventing PEC activation and glomerulosclerosis remains poorly understood. In this study, we show that glomerular mTOR and PEC activation-related genes were both upregulated and intercorrelated in biopsies from patients with focal segmental glomerulosclerosis (FSGS) and diabetic nephropathy, suggesting both compensatory and pathological roles.
View Article and Find Full Text PDFThe role of microvesicles (MVs) in transcellular signal transduction has been demonstrated in different studies. However, the potential modulatory role of MVs in fracture healing remains unclear. Therefore, we investigated the impact of plasma-derived MVs after a femoral fracture on cranial osteoblasts.
View Article and Find Full Text PDFRecent developments in optical tissue clearing have been difficult to apply for the morphometric analysis of organs with high cellular content and small functional structures, such as the kidney. Here, we establish combinations of genetic and immuno-labelling for single cell identification, tissue clearing and subsequent de-clarification for histoimmunopathology and transmission electron microscopy. Using advanced light microscopy and computational analyses, we investigated a murine model of crescentic nephritis, an inflammatory kidney disease typified by immune-mediated damage to glomeruli leading to the formation of hypercellular lesions and the rapid loss of kidney function induced by nephrotoxic serum.
View Article and Find Full Text PDFTyrosine kinase inhibitor (TKI) therapy effectively blocks oncogenic Bcr-Abl signaling and induces molecular remission in the majority of CML patients. However, the disease-driving stem cell population is not fully targeted by TKI therapy in the majority of patients, and leukemic stem cells (LSCs) capable of re-inducing the disease can persist. In TKI-resistant CML, STAT3 inhibition was previously shown to reduce malignant cell survival.
View Article and Find Full Text PDFPegylated interferon-α (peg-IFNa) treatment induces molecular responses (MR) in patients with myeloproliferative neoplasms (MPNs), including partial MR (PMR) in 30-40% of patients. Here, we compared the efficacy of IFNa treatment in JAK2V617F- vs. calreticulin (CALR)-mutated cells and investigated the mechanisms of differential response.
View Article and Find Full Text PDFHigh-performance oxide ceramics (HPOC), such as alumina, zirconia, and dispersion ceramics thereof are successfully used as articulating components in joint arthroplasty. HPOC exhibit excellent wear resistance, high strength, and cytocompatible behavior; however, they lack sufficient tissue bonding capability. Thus, they are primarily deployed as low-wear-bearing articulating components in arthroplasty without direct tissue contact, although proper cellular stimulation would hold significant advantages.
View Article and Find Full Text PDFE-type cyclins E1 (CcnE1) and E2 (CcnE2) are regulatory subunits of cyclin-dependent kinase 2 (Cdk2) and thought to control the transition of quiescent cells into the cell cycle. Initial findings indicated that CcnE1 and CcnE2 have largely overlapping functions for cancer development in several tumor entities including hepatocellular carcinoma (HCC). In the present study, we dissected the differential contributions of CcnE1, CcnE2, and Cdk2 for initiation and progression of HCC in mice and patients.
View Article and Find Full Text PDFMacrodomains are conserved protein folds associated with ADP-ribose binding and turnover. ADP-ribosylation is a posttranslational modification catalyzed primarily by ARTD (aka PARP) enzymes in cells. ARTDs transfer either single or multiple ADP-ribose units to substrates, resulting in mono- or poly-ADP-ribosylation.
View Article and Find Full Text PDFHaploinsufficiency of is a cause of a neurodevelopmental syndrome termed mental retardation autosomal dominant 7 (MRD7). Several truncation mutations, microdeletions and missense variants have been identified and result in a recognizable phenotypic profile, including microcephaly, intellectual disability, epileptic seizures, autism spectrum disorder and language delay. DYRK1A is an evolutionary conserved protein kinase which achieves full catalytic activity through tyrosine autophosphorylation.
View Article and Find Full Text PDFLife-threatening cardiomyopathy is a severe, but common, complication associated with severe trauma or sepsis. Several signaling pathways involved in apoptosis and necroptosis are linked to trauma- or sepsis-associated cardiomyopathy. However, the underling causative factors are still debatable.
View Article and Find Full Text PDFThe relevance of topographic cues for commitment of induced pluripotent stem cells (iPSCs) is largely unknown. In this study, we demonstrate that groove-ridge structures with a periodicity in the submicrometer range induce elongation of iPSC colonies, guide the orientation of apical actin fibers, and direct the polarity of cell division. Elongation of iPSC colonies impacts also on their intrinsic molecular patterning, which seems to be orchestrated from the rim of the colonies.
View Article and Find Full Text PDFBone marrow fibrosis (BMF) develops in various hematological and non-hematological conditions and is a central pathological feature of myelofibrosis. Effective cell-targeted therapeutics are needed, but the cellular origin of BMF remains elusive. Here, we show using genetic fate tracing in two murine models of BMF that Gli1 mesenchymal stromal cells (MSCs) are recruited from the endosteal and perivascular niche to become fibrosis-driving myofibroblasts in the bone marrow.
View Article and Find Full Text PDF