Hyperpolarization via the solid-state photochemically induced dynamic nuclear polarization (photo-CIDNP) effect can be detected in frozen solutions of electron transfer proteins generating a radical-pair upon illumination. The effect has been observed in various natural photosynthetic reaction centers and in light-oxygen-voltage (LOV) sensing domains incorporating a flavin mononucleotide (FMN) as chromophore. In LOV domains, where a highly conserved cysteine is mutated to a flavin to interrupt its natural photochemistry, a radical-pair is generated by electron transfer from a nearby tryptophan to the photoexcited triplet state of FMN.
View Article and Find Full Text PDFMethods Mol Biol
August 2021
Chloroplasts, the sites of photosynthesis and sources of reducing power, are at the core of the success story that sets apart autotrophic plants from most other living organisms. Along with their fellow organelles (e.g.
View Article and Find Full Text PDFQuantum entanglement has been realized on a variety of physical platforms such as quantum dots, trapped atomic ions, and superconductors. Here we introduce specific molecular solids as promising alternative platforms. Our model system is triplet pentacene in a host single crystal at level anticrossing (LAC) conditions.
View Article and Find Full Text PDFPlants contain a nuclear gene family for plastid sigma factors, i.e., proteins that associate with the "bacterial-type" organellar RNA polymerase and confer the ability for correct promoter binding and transcription initiation.
View Article and Find Full Text PDFPhototropin is a flavin mononucleotide (FMN) containing blue-light receptor, which regulates, governed by its two LOV domains, the phototropic response of higher plants. Upon photoexcitation, the FMN cofactor triplet state, (3)F, reacts with a nearby cysteine to form a covalent adduct. Cysteine-to-alanine mutants of LOV domains instead generate a flavin radical upon illumination.
View Article and Find Full Text PDFChloroplasts, the sites of photosynthesis and sources of reducing power, are at the core of the success story that sets apart autotrophic plants from most other living organisms. Along with their fellow organelles (e.g.
View Article and Find Full Text PDFCrystallographic models of photosystem I (PS I) highlight a symmetrical arrangement of the electron transfer cofactors which are organized in two parallel branches (A, B) relative to a pseudo-C2 symmetry axis that is perpendicular to the membrane plane. Here, we explore the electron transfer pathways of PS I in whole cells of the deuterated green alga Chlamydomonas reinhardtii using high-time-resolution electron paramagnetic resonance (EPR) at cryogenic temperatures. Particular emphasis is given to quantum oscillations detectable in the tertiary radical pairs P700(+)A1A(-) and P700(+)A1B(-) of the electron transfer chain.
View Article and Find Full Text PDFA plastidic serine/threonine protein kinase, initially named plastid transcription kinase (PTK) has been implicated in phosphorylation and redox control of chloroplast transcription. This kinase was later renamed as chloroplast casein kinase 2 (cpCK2) because of its physical and functional similarity to nucleocytosolic casein kinase 2 (ncCK2). It shares all four of its cysteine residues with ncCK2 from land plants, while only three of these residues are conserved in algal CK2-type sequences, and just two in animals.
View Article and Find Full Text PDFChloroplasts and other plastids within plant cells together are responsible for autotrophic growth and biosynthesis of metabolic key components. Genetically, the plastids are hybrid organelles composed of proteins that are either products of their own organellar genes or are nucleus-encoded and imported from the cytosol. This dual genetic principle is evident in the case of the multi-subunit RNA polymerase, i.
View Article and Find Full Text PDFBlue-light excitation of cryptochromes and homologues uniformly triggers electron transfer (ET) from the protein surface to the flavin adenine dinucleotide (FAD) cofactor. A cascade of three conserved tryptophan residues has been considered to be critically involved in this photoreaction. If the FAD is initially in its fully oxidized (diamagnetic) redox state, light-induced ET via the tryptophan triad generates a series of short-lived spin-correlated radical pairs comprising an FAD radical and a tryptophan radical.
View Article and Find Full Text PDFThe unique physical properties of photoexcited triplet states have been explored in numerous spectroscopic studies employing electron paramagnetic resonance (EPR). So far, however, no quantum interference effects were found in these systems in the presence of a magnetic field. In this study, we report the successful EPR detection of nuclear quantum oscillations in an organic triplet state subject to an external magnetic field.
View Article and Find Full Text PDFPlastids contain sigma factors, i.e. gene-regulatory proteins for promoter binding and transcription initiation.
View Article and Find Full Text PDFLike bacteria, plastids contain sigma factors for promoter binding and transcription initiation. Accumulating evidence suggests that members of the plant sigma factor family can have specialized non-redundant roles in terms of promoter preference in various developmental and environmental situations. To specify regulatory determinants, we have chosen pairwise exchange of portions of Arabidopsis sigma coding regions, followed by transformation of the chimeric constructs into a sigma 6 knockout line.
View Article and Find Full Text PDFFor the investigation of the physical processes of human phonation, inhomogeneous synthetic vocal folds were developed to represent the full fluid-structure-acoustic coupling. They consisted of polyurethane rubber with a stiffness in the range of human vocal folds and were mounted in a channel, shaped like the vocal tract in the supraglottal region. This test facility permitted extensive observations of flow-induced vocal fold vibrations, the periodic flow field, and the acoustic signals in the far field of the channel.
View Article and Find Full Text PDFThe structure of the secondary radical pair, P865(+)Q(A)-, in fully deuterated and Zn-substituted reaction centers (RCs) of the purple bacterium Rhodobacter sphaeroides R-26 has been determined by high-time resolution and high-field electron paramagnetic resonance (EPR). A computer analysis of quantum beat oscillations, observed in a two-dimensional Q-band (34 GHz) EPR experiment, provides the orientation of the various magnetic tensors of P865(+)Q(A)- with respect to a magnetic reference frame. The orientation of the g-tensor of P865(+) in an external reference system is adapted from a single-crystal W-band (95 GHz) EPR study [Klette, R.
View Article and Find Full Text PDFPulsed electron nuclear double resonance (ENDOR) using a modified Davies-type [Phys. Lett. 47A, 1 (1974)] sequence is employed to study the hyperfine (HF) structure of the photoexcited triplet state of pentacene dispersed in protonated and deuterated p-terphenyl single crystals.
View Article and Find Full Text PDFChloroplasts sigma factors act in concert with PEP, the bacterial-type plastid RNA polymerase. Using a sigma knockout line from Arabidopsis thaliana, we investigated mutant-specific changes in plastid gene expression at RNA level. One characteristic feature was the appearance of a long transcript that spans the atpB-E operon and extends considerably into the far-upstream region of atpB.
View Article and Find Full Text PDFPlants contain nuclear-coded sigma factors for initiation of chloroplast transcription. The in vivo function of individual members of the sigma gene family has become increasingly accessible by knockout and complementation strategies. Here we have investigated plastid gene expression in an Arabidopsis (Arabidopsis thaliana) mutant with a defective gene for sigma factor 6.
View Article and Find Full Text PDFWe demonstrate the potential of high-field (HF) time-resolved electron paramagnetic resonance (EPR) spectroscopy to reveal unique information about electron transfer processes and the structure of photosynthetic systems. The lineshapes and electron spin polarization (ESP) of spin-correlated radical pair (SCRP) spectra recorded with HF-EPR are very sensitive to the magnetic parameters, interactions, and geometry of the radicals in the pair. This sensitivity facilitates an analysis of more sophisticated models and methods to reveal the important relationship between structural organization and light-induced electron transfer of the photosynthetic proteins.
View Article and Find Full Text PDFThe chloroplast transcription apparatus has turned out to be more complex than anticipated, with core polypeptides surrounded by multiple accessory proteins of diverse, and in part unexpected, functions. At least two different RNA-binding proteins and several redox-responsive proteins are components of the major chloroplast RNA polymerase termed PEP-A. One of the key-regulatory factors has been identified as a Ser/Thr-specific protein kinase that is sensitive to SH group modification by glutathione and by this means is able to modulate transcription.
View Article and Find Full Text PDFWe have isolated and studied the cloned sigma factors SASIG1-3 from mustard (Sinapis alba). In functional analyses using both promoter and factor mutants, the three recombinant proteins all had similar basic properties but also revealed differences in promoter preference and requirements for single nucleotide positions. Directed muta- genesis of SASIG1 identified critical residues within the conserved regions 2.
View Article and Find Full Text PDFChloroplasts are the important plant cell organelles where photosynthesis takes place. Throughout this process, reaction center proteins are degraded and subsequently replenished by redox-responsive gene expression. In addition to well defined posttranscriptional mechanisms at the RNA and protein level, the transcription of chloroplast DNA into RNA precursors has been a focal point of studies in this area.
View Article and Find Full Text PDFThe plastid transcription kinase (PTK), a component of the major RNA polymerase complex from mustard chloroplasts, has been implicated in redox-mediated regulation of plastid gene expression. A cloning strategy to define the PTK gene(s) resulted in the isolation of a full-length cDNA for a protein with overall high homology with the alpha subunit of cytosolic casein kinase (CK2) that contained an N-terminal extension for a putative plastid transit peptide. Using in organello chloroplast import studies, immunodetection and MS, we found that the corresponding protein, termed cpCK2alpha, is targeted to the chloroplast and is associated with the plastid RNA polymerase PEP-A.
View Article and Find Full Text PDF