Publications by authors named "Gerhard Krumschnabel"

High-Resolution FluoRespirometry is a well-established and versatile approach to study mitochondrial oxygen uptake amperometrically in combination with measurement of fluorescence signals. One of the most frequently applied fluorescent dyes is Amplex UltraRed for monitoring rates of hydrogen peroxide production. Selection of an appropriate mitochondrial respiration medium is of crucial importance, the primary role of which is to support and preserve optimum mitochondrial function.

View Article and Find Full Text PDF

Protocols for High-Resolution FluoRespirometry of intact cells, permeabilized cells, permeabilized muscle fibers, isolated mitochondria, and tissue homogenates offer sensitive diagnostic tests of integrated mitochondrial function using standard cell culture techniques, small needle biopsies of muscle, and mitochondrial preparation methods. Multiple substrate-uncoupler-inhibitor titration (SUIT) protocols for analysis of oxidative phosphorylation (OXPHOS) improve our understanding of mitochondrial respiratory control and the pathophysiology of mitochondrial diseases. Respiratory states are defined in functional terms to account for the network of metabolic interactions in complex SUIT protocols with stepwise modulation of coupling control and electron transfer pathway states.

View Article and Find Full Text PDF

Current strategies used to quantitatively describe the biological diversity of lipids by mass spectrometry are often limited in assessing the exact structural variability of individual molecular species in detail. A major challenge is represented by the extensive isobaric overlap present among lipids, hampering their accurate identification. This is especially true for cardiolipins, a mitochondria-specific class of phospholipids, which are functionally involved in many cellular functions, including energy metabolism, cristae structure, and apoptosis.

View Article and Find Full Text PDF

Lipoyl(Octanoyl) Transferase 2 (LIPT2) is a protein involved in the post-translational modification of key energy metabolism enzymes in humans. Defects of lipoic acid synthesis and transfer start to emerge as causes of fatal or severe early-onset disease. We show that the first 31 amino acids of the N-terminus of LIPT2 represent a mitochondrial targeting sequence and inhibition of the transit of LIPT2 to the mitochondrion results in apoptotic cell death associated with activation of the apoptotic volume decrease (AVD) current in normotonic conditions, as well as over-activation of the swelling-activated chloride current (IClswell), mitochondrial membrane potential collapse, caspase-3 cleavage and nuclear DNA fragmentation.

View Article and Find Full Text PDF

Oxadiazines are heterocyclic compounds containing N-N-O or N-N-C-O system within a six membered ring. These structures have been up to now exclusively prepared via organic synthesis. Here, we report the discovery of a natural oxadiazine nocuolin A (NoA) that has a unique structure based on 1,2,3-oxadiazine.

View Article and Find Full Text PDF

Whereas mitochondria are well established as the source of ATP in oxidative phosphorylation (OXPHOS), it is debated if they are also the major cellular sources of reactive oxygen species (ROS). Here we describe the novel approach of combining high-resolution respirometry and fluorometric measurement of hydrogen peroxide (H2O2) production, applied to mitochondrial preparations (permeabilized cells, tissue homogenate, isolated mitochondria). The widely used H2O2 probe Amplex Red inhibited respiration in intact and permeabilized cells and should not be applied at concentrations above 10 µM.

View Article and Find Full Text PDF
Article Synopsis
  • The tumor suppressor p53 is crucial for controlling cell cycle arrest and apoptosis when DNA is damaged, primarily through regulating specific genes, but the detailed workings are still not fully clear.
  • Recent findings suggest that PDCD5, a protein thought to enhance apoptosis, is involved in regulating the acetylation of p53 by Tip60, yet studies show that PDCD5 does not play a key role in the DNA damage response.
  • Experiments indicated that while PDCD5 interacts with p53, it does not impact the processes of cell cycle arrest and apoptosis or the transcription of p53 target genes in the cell types tested, implying a different regulatory role for PDCD5.
View Article and Find Full Text PDF

Mitochondrial respiration is associated with the formation of reactive oxygen species, primarily in the form of superoxide (O2 (•-)) and particularly hydrogen peroxide (H2O2). Since H2O2 plays important roles in physiology and pathology, measurement of hydrogen peroxide has received considerable attention over many years. Here we describe how the well-established Amplex Red assay can be used to detect H2O2 production in combination with the simultaneous assessment of mitochondrial bioenergetics by high-resolution respirometry.

View Article and Find Full Text PDF

The mitochondrial transmembrane potential (Δψmt or mtMP) is directly influenced by oxidative phosphorylation (OXPHOS). The exact nature of the interactions between respiration (flux) and mtMP (force) under various physiological and pathological conditions remains unclear, partially due to methodological limitations. Here, we describe a combination of high-resolution respirometry and fluorometry based on the OROBOROS Oxygraph-2k and the widely applied mtMP indicator safranin.

View Article and Find Full Text PDF

Necroptosis is a physiologically relevant mode of cell death with some well-described initiating events, but largely unknown executioners. Here we investigated necrostatin-1 (Nec-1) sensitive death elicited by different necroptosis stimuli in L929 mouse fibrosarcoma cells, mouse embryonic fibroblasts (MEF) and bone marrow-derived macrophages. We found that TNFα- or zVAD-induced necroptosis occurs independently of the recently implicated executioners Bmf or PARP-2, but can involve the Bcl-2 family proteins Bid and Bak.

View Article and Find Full Text PDF

For animal cell plasma membranes, the permeability of water is much higher than that of ions and other solutes, and exposure to hyposmotic conditions almost invariably causes rapid water influx and cell swelling. In this situation, cells deploy regulatory mechanisms to preserve membrane integrity and avoid lysis. The phenomenon of regulatory volume decrease, the partial or full restoration of cell volume following cell swelling, is well-studied in mammals, with uncountable investigations yielding details on the signaling network and the effector mechanisms involved in the process.

View Article and Find Full Text PDF

Apoptosis triggered by p53 upon DNA damage secures removal of cells with compromised genomes, and is thought to prevent tumorigenesis. In contrast, we provide evidence that p53-induced apoptosis can actively drive tumor formation. Mice defective in p53-induced apoptosis due to loss of its proapoptotic target gene, puma, resist gamma-irradiation (IR)-induced lymphomagenesis.

View Article and Find Full Text PDF

Animals generally show various adaptation features that render them fit for survival in their specific environment or, turned the other way round, specific environments can only be inhabited by animals that have developed corresponding adaptations. While this seems obvious nowadays to every biologist, 50years ago this concept still needed to be validated for each specific case. In a brief historical perspective we highlight an outstanding example of an article where such environment-physiology relations have been examined in detail and where in fact the foundations of a new branch in ecophysiology have been established, the Ecophysiology of the Marine Meiofauna.

View Article and Find Full Text PDF

Cadmium is an important environmental toxicant that can kill cells. A number of studies have implicated apoptosis as well as necrosis and, most recently, a form of programmed necrosis termed necroptosis in the process of cadmium-mediated toxicity, but the exact mechanism remains ill-defined and may depend on the affected cell type. This study investigated which mode of cell death may be responsible for cell death induction in cadmium-exposed trout cell lines from gill and liver and if this cell death was sensitive to inhibitors of necroptosis or apoptosis, respectively.

View Article and Find Full Text PDF

Dormancy in vertebrates may expose cells to acidosis, hypoxia/anoxia, oxidative damage, and extremes in temperature. All of these insults are known to be pro-apoptotic in typical vertebrate cells, especially mammals. Since dormancy is presumably the result of a need for energy conservation, the inherent energetic demand of replenishing cells that underwent apoptosis seems at odds with this strategy.

View Article and Find Full Text PDF

Human erythrocytes have been regarded as perfect osmometers, which swell or shrink as dictated by their osmotic environment. In contrast, in most other cells, swelling elicits a regulatory volume decrease (RVD) modulated by the activation of purinic and pyrimidinic receptors (P receptors). For human erythrocytes this modulation has not been tested, and we thus investigated whether P receptor activation can induce RVD in these cells.

View Article and Find Full Text PDF

PIDD (p53-induced protein with a death domain [DD]), together with the bipartite adapter protein RAIDD (receptor-interacting protein-associated ICH-1/CED-3 homologous protein with a DD), is implicated in the activation of pro-caspase-2 in a high molecular weight complex called the PIDDosome during apoptosis induction after DNA damage. To investigate the role of PIDD in cell death initiation, we generated PIDD-deficient mice. Processing of caspase-2 is readily detected in the absence of PIDDosome formation in primary lymphocytes.

View Article and Find Full Text PDF

Apoptosis is a process of pivotal importance for multi-cellular organisms and due to its implication in the development of cancer and degenerative disease it is intensively studied in humans and mammalian model systems. Invertebrate models of apoptosis have been well-studied, especially in C. elegans and D.

View Article and Find Full Text PDF

In most animal cells, hypotonic swelling is followed by a regulatory volume decrease (RVD) thought to prevent cell death. In contrast, goldfish hepatocytes challenged with hypotonic medium (180 mosM, HYPO) increase their volume 1.7 times but remain swollen and viable for at least 5 h.

View Article and Find Full Text PDF

Apoptotic cell death in mammalian models is frequently associated with cell shrinkage. Inhibition of apoptotic volume decrease (AVD) is cytoprotective, suggesting that cell shrinkage is an important early event in apoptosis. In salmonid hepatoma and gill cells staurosporine induced apoptosis, as assessed by activation of effector caspases, nuclear condensation, and a decrease of mitochondrial membrane potential (MMP), and these changes were accompanied by cell shrinkage.

View Article and Find Full Text PDF

The mitogen-activated protein kinase ERK is an important signalling molecule involved in the control of cell proliferation, differentiation and cell death, targeting molecules at the cell membrane, in the cytosol, and in the nucleus. This study investigated the activation pattern and subcellular distribution of ERK in liver and gill cells of rainbow trout upon hypo-osmotic shock, addition of epidermal growth factor (EGF) and copper treatment. It further set out to characterize the hypothetical role of nuclear-export signal (NES)-dependent relocation of ERK after nuclear entry and the potential involvement of the ERK activator MEK.

View Article and Find Full Text PDF

In trout hepatocytes, hypertonicity and cytosolic acidification are known to stimulate Na+/H+ exchanger (NHE) activity, which contributes to recovery of cell volume and intracellular pH (pHi), respectively. The present study investigated the signalling mechanisms underlying NHE activation under these conditions. Exposing trout hepatocytes to cariporide, a specific inhibitor of NHE-1, decreased baseline pHi, completely blocked the hypertonicity-induced increase of pHi and reduced the hypertonicity-induced proton secretion by 80%.

View Article and Find Full Text PDF

The present study investigated if copper (Cu) exposure of trout hepatocytes, which stimulates formation of reactive oxygen species (ROS) and increases intracellular free Ca(2+) (Ca(2+)i), leads to an activation of extracellular signal-regulated kinase (ERK), the mechanisms underlying this activation, and the role of ERK signaling in cell death. Cu stimulated a time- and dose-dependent increase of phosphorylated extracellular signal-regulated kinase (pERK), and preventing the associated Ca(2+) influx or radical formation diminished or inhibited ERK activation, respectively. Furthermore, Cu enhanced caspase 3/7 activity and necrosis, and both effects were inhibited by treatments diminishing radical production and by chelating extracellular Ca(2+).

View Article and Find Full Text PDF

Activation of the extracellular signal-regulated MAP-kinase (ERK) by anisoosmotic conditions, the underlying signalling pathways, and the role of protein kinases in cell volume regulation were investigated in trout hepatocytes. While hyperosmolarity left phosphorylated ERK (pERK) levels unaffected, hypoosmolarity caused a significant increase of pERK within 2 min which peaked at around 30 min. Chelating extracellular Ca2+ to prevent the influx of Ca2+ associated with swelling reduced iso- and abolished hypoosmotic ERK activation.

View Article and Find Full Text PDF