Publications by authors named "Gerhard F Swiegers"

The activity and stability of a heterogeneous water oxidation catalyst inspired by the Photosystem II - Oxygen Evolving Center (PSII-OEC) is reported. Ca-doped birnessite MnO supported on a liquid crystalline reduced graphene oxide (LCrGO) substrate exhibited unprecedented performance for an abiological catalyst at pH 7, including an exceedingly low onset overpotential of 0.52 V (.

View Article and Find Full Text PDF

This study employs density functional theory at the SMD/B3LYP-D3/6-311+G(2d,p),def2-TZVPP//SMD/B3LYP-D3/6-31G(d),SDD level of theory to explore the mechanistic details of O generation from BuOOH, using HO as the solvent, in the presence of the Mn(II) catalyst [Mn(mcbpen)(HO)]. Since this chemistry was reported to occur through the reaction of Mn(III)(μ-O)Mn(IV)-O˙ with water, we first revaluated this proposal and found that it occurs with an activation barrier greater than 36 kcal mol, ruling out the functioning of such a dimer as the active catalyst. Experimental evidence has shown that the oxidation of [Mn(mcbpen)(HO)] by BuOOH in HO produces the Mn(IV) species [Mn(O)(mcbpen)].

View Article and Find Full Text PDF

The low activation barrier for O-O coupling in the closed-cubane Oxygen-Evolving Centre (OEC) of Photosystem II (PSII) requires water coordination with the Mn4 'dangler' ion in the Mn(V)-oxo fragment. This coordination transforms the Mn(V)-oxo complex into a more reactive Mn4(IV)-oxyl species, enhancing O-O coupling. This study explains the mechanism behind the coordination and indicates that in the most stable form of the OEC, the Mn4 fragment adopts a trigonal bipyramidal geometry but needs to transition to a square pyramidal form to be activated for O-O coupling.

View Article and Find Full Text PDF

The experimentally reported Mn(IV)Mn(III) complex [Mn(μ-O)(terpy)(OH)] has been observed catalyzing O generation with oxidants like ClO and HSO. Previous mechanistic studies primarily focused on O generation with HSO, concluding that Mn(IV)Mn(III) acts as a catalyst, generating a Mn(IV)Mn(IV)-oxyl species as a key intermediate responsible for O-O bond formation. This computational study employs DFT calculations to investigate whether the catalytic generation of O using ClO follows the same mechanism previously identified with HSO as the oxidant, or if it proceeds through an alternate pathway.

View Article and Find Full Text PDF

In this study, new composite materials comprising zeolitic imidazolate framework (ZIF) structures and microchannel glass (MCG) plates were fabricated using the hydrothermal method and their morphological and spectral properties were investigated using XRD, SEM, FTIR, and Raman spectroscopy. XRD studies of powder samples revealed the presence of an additional phase for a ZIF-8 sample, whereas ZIF-67 samples, which were prepared through two different chemical routes, showed no additional phases. A detailed analysis of the FTIR and micro-Raman spectra of the composite samples revealed the formation of stable ZIF structures inside the macropores of the MCG substrate.

View Article and Find Full Text PDF

Renewable, or green, hydrogen will play a critical role in the decarbonisation of hard-to-abate sectors and will therefore be important in limiting global warming. However, renewable hydrogen is not cost-competitive with fossil fuels, due to the moderate energy efficiency and high capital costs of traditional water electrolysers. Here a unique concept of water electrolysis is introduced, wherein water is supplied to hydrogen- and oxygen-evolving electrodes via capillary-induced transport along a porous inter-electrode separator, leading to inherently bubble-free operation at the electrodes.

View Article and Find Full Text PDF

The use of graphenic carbon is attractive as a basal or intermediate support for catalytic particles in advanced catalytic electrodes. This popularity is motivated by its excellent electrical properties and ability to form foliated conformal coatings of exceptional surface area and flexibility. Surface- and edge-functionalisation of graphene sheets affords diverse routes to the covalent attachment of candidate catalytic species.

View Article and Find Full Text PDF

A significant and long-standing problem in electrochemistry has demanded the need for gas diffusion electrodes that are "flood-proof" and "leak-proof" when operated with a liquid electrolyte. The absence of a solution to this problem has, effectively, made it unviable to use gas diffusion electrodes in many electrochemical manufacturing processes, especially as " gas-depolarized" counter electrodes with significantly decreased energy consumption. In this work, Gortex membranes (also known as expanded PTFE or ePTFE) have been studied as novel, leak-proof substrates for gas diffusion electrodes [PTFE = poly(tetrafluoroethylene)].

View Article and Find Full Text PDF

Microwave-assisted heating of functionalized, single-wall carbon nanotubes (FCNTs) in ethylene glycol solution containing H(2)PtCl(6), led to the reductive deposition of Pt nanoparticles (2.5-4 nm) over the FCNTs, yielding an active catalyst for proton-exchange membrane fuel cells (PEMFCs). In single-cell testing, the Pt/FCNT composites displayed a catalytic performance that was superior to Pt nanoparticles supported by raw (unfunctionalized) CNTs (RCNTs) or by carbon black (C), prepared under identical conditions.

View Article and Find Full Text PDF

A novel designed free-standing, sandwich-structured membrane electrode assembly (MEA), nano-Pt loaded (0.142 mg cm(-2)) ACNT/Nafion/ACNT via the attachment of two sets of aligned CNT array electrode structures to opposite sides of a Nafion PEM membrane exhibits significantly improved performance compared to commercially available Pt/CB catalysts used in PEM fuel cell applications.

View Article and Find Full Text PDF

A photoelectrochemical cell was designed that catalyzes the photooxidation of water using visible light as the sole energy source and a molecular catalyst, [Mn(4)O(4)L(6)](+) (1(+), L = bis(methoxyphenyl)phosphinate), synthesized from earth-abundant elements. The essential features include a photochemical charge separation system, [Ru(II)(bipy)(2)(bipy(COO)(2))], adhered to titania-coated FTO conductive glass, and 1(+) embedded within a proton-conducting membrane (Nafion). The complete photoanode represents a functional analogue of the water-oxidizing center of natural photosynthesis.

View Article and Find Full Text PDF

Hydrogen is the most promising fuel of the future owing to its carbon-free, high-energy content and potential to be efficiently converted into either electrical or thermal energy. The greatest technical barrier to accessing this renewable resource remains the inability to create inexpensive catalysts for the solar-driven oxidation of water. To date, the most efficient system that uses solar energy to oxidize water is the photosystem II water-oxidizing complex (PSII-WOC), which is found within naturally occurring photosynthetic organisms.

View Article and Find Full Text PDF

Photoelectrochemical cells that efficiently split water into oxygen and hydrogen, "the fuel of the future", need to combine robust water oxidation catalysts at the anode (2H(2)O --> O(2) + 4H(+) + 4e(-)) with hydrogen reduction catalysts at the cathode (2H(+) + 2e(-)--> H(2)). Both sets of catalysts will, ideally, operate at low overpotentials and employ light-driven or light-assisted processes. In this Perspective article, we focus on significant efforts to develop solid state materials and molecular coordination complexes as catalyst for water oxidation.

View Article and Find Full Text PDF

High valence states in manganese clusters are a key feature of the function of one of the most important catalysts found in nature, the water-oxidizing complex of photosystem II. We describe a detailed electrochemical investigation of two bio-inspired manganese-oxo complexes, [Mn(4)O(4)L(6)] (L = diphenylphosphinate (1) and bis(p-methoxyphenyl)phosphinate (2)), in solution, attached to an electrode surface and suspended within a Nafion film. These complexes contain a cubic [Mn(4)O(4)](6+) core stabilized by phosphinate ligands.

View Article and Find Full Text PDF

The bioinspired Mn-oxo cubane complex, [Mn(4)O(4)L(6)](+) 1b(+) (L = (p-MeO-Ph)(2)PO(2)), is a model of the photosynthetic O(2)-evolving complex. It is able to electro-oxidize water at 1.00 V (vs Ag/AgCl) under illumination by UV-visible light when suspended in a proton-conducting membrane (Nafion) coated onto a conducting electrode.

View Article and Find Full Text PDF

Chemical reactions may be controlled by either: 1) the minimum threshold energy that must be overcome during collisions between reactant molecules/atoms (the activation energy, E(a)), or: 2) the rate at which reactant collisions occur (the collision frequency, A)--for reactions with low E(a). Reactions of type 2 are governed by the physical, mechanical interaction of the reactants. Such mechanical processes are unusual, but not unknown in molecular catalysts.

View Article and Find Full Text PDF

Monomeric cobalt(II) tetraphenylporphyrin immobilized in high concentrations within vapour-phase polymerized polypyrrole deposited on an ITO electrode catalyzes the 4-electron reduction of dioxygen to water, a reaction requiring concerted action by two separate catalytic groups.

View Article and Find Full Text PDF

The ligand (R,S)-Ph(2)PCH(2)CH(2)P(Ph)CH(2)CH(2)P(Ph)CH(2)CH(2)PPh(2), (R,S)-tetraphos, combines with silver(I) and gold(I) ions in the presence of hexafluorophosphate to diastereoselectively self-assemble the head-to-head (H,H) diastereomers of the double-stranded, dinuclear metal complexes [M(2)[(R,S)-tetraphos](2)](PF(6))(2) in which the two chiral metal centers in the complexes have M (R end of phosphine) and P (S end of phosphine) configurations. The crystal and molecular structures of the compounds have been determined: (H,H)-(M,P) -[Ag(2)[(R,S)-tetraphos](2)](PF(6))(2), monoclinic, P2(1)/c, a = 10.3784(2), b = 47.

View Article and Find Full Text PDF

Numerous reports describe the photoluminescence of two- and three-coordinate gold(I)-phosphine complexes, but emission in their analogous four-coordinate complexes is almost unknown. This work examines the luminescence of tetrahedral gold(I) complexes of the types [Au(diphos)(2)]PF(6) (diphos = 1,2-bis(diphenylphosphino)ethane, 1) and [Au(2)(tetraphos)(2)](PF(6))(2) (tetraphos = (R,R)-(+/-)/(R,S)-1,1,4,7,10,10-hexaphenyl-1,4,7,10-tetraphosphadecane, (R,R)-(+/-)/(R,S)-2). Although nonemitting in solution, these complexes luminesce with an intense yellow color (lambda(max) 580-620 nm) at 293 K in the solid state or when immobilized as molecular dispersions within solid matrixes.

View Article and Find Full Text PDF

Three configurationally homogeneous diastereomers of the linear hexa(tertiary phosphine) Ph(2)PCH(2)CH(2)P(Ph)CH(2)CH(2)P(Ph)CH(2)CH(2)P(Ph)CH(2)CH(2)P(Ph)CH(2)CH(2)PPh(2) (hexaphos) have been isolated in enantiomerically pure form, namely (R,S,S,R)-, (R,S,S,S)-, and (S,S,S,S)-hexaphos. The strongly helicating (R,S,S,R)-(-) form of the ligand combines with copper(I) ions to generate by stereoselective self-assembly the P enantiomer of a parallel helicate of the type [Cu(3)(hexaphos)(2)](PF(6))(3), which has been characterized by x-ray crystallography. Theoretical modeling of the cation indicates that it is the relationship between the helicities of the two 10-membered rings containing the three copper ions, each of which has the twist-boat-chair-boat conformation, and the configurations of the three chiral, tetrahedral copper stereocenters of P configuration that determines the stereochemistry of the parallel and double alpha-helix conformers of the double-stranded trinuclear metal helicate.

View Article and Find Full Text PDF