Publications by authors named "Gergo Porkolab"

Article Synopsis
  • Human stem cell-derived blood-brain barrier (BBB) models are crucial for understanding brain diseases and drug development, but creating endothelial cells with proper BBB characteristics is a challenge.
  • Researchers developed a small-molecule cocktail called cARLA that activates specific signaling pathways to enhance BBB properties in endothelial cells, specifically through the tight junction protein claudin-5.
  • cARLA not only helps human BBB models better mimic in vivo brain endothelial characteristics but also improves their ability to predict how well drugs and nanoparticles can penetrate the brain, making it a promising tool for research and drug development.
View Article and Find Full Text PDF

A great progress has been made in the development and use of lab-on-a-chip devices to model and study the blood-brain barrier (BBB) in the last decade. We present the main types of BBB-on-chip models and their use for the investigation of BBB physiology, drug and nanoparticle transport, toxicology and pathology. The selection of the appropriate cell types to be integrated into BBB-on-chip devices is discussed, as this greatly impacts the physiological relevance and translatability of findings.

View Article and Find Full Text PDF

Nanoparticles (NPs) are the focus of research efforts that aim to develop successful drug delivery systems for the brain. Polypeptide nanocarriers are versatile platforms and combine high functionality with good biocompatibility and biodegradability. The key to the efficient brain delivery of NPs is the specific targeting of cerebral endothelial cells that form the blood-brain barrier (BBB).

View Article and Find Full Text PDF

The application of 2-hydroxypropyl-beta-cyclodextrin (HPBCD) in the treatment of the rare cholesterol and lipid storage disorder Niemann-Pick disease type C opened new perspectives in the development of an efficient therapy. Even if the systemic administration of HPBCD was found to be effective, its low permeability across the blood-brain barrier (BBB) limited the positive neurological effects. Nevertheless, the cellular interactions of HPBCD with brain capillary endothelial cells have not been investigated in detail.

View Article and Find Full Text PDF

Several degenerative disorders of the central nervous system, including Parkinson's disease (PD), are related to the pathological aggregation of proteins. Antibodies against toxic disease proteins, such as α-synuclein (SNCA), are therefore being developed as possible therapeutics. In this work, one peptide (YVGSKTKEGVVHGVA) from SNCA was used as the epitope to construct magnetic molecularly imprinted composite nanoparticles (MMIPs).

View Article and Find Full Text PDF

Nanosized drug delivery systems targeting transporters of the blood-brain barrier (BBB) are promising carriers to enhance the penetration of therapeutics into the brain. The expression of solute carriers (SLC) is high and shows a specific pattern at the BBB. Here we show that targeting ligands ascorbic acid, leucine and glutathione on nanoparticles elevated the uptake of albumin cargo in cultured primary rat brain endothelial cells.

View Article and Find Full Text PDF

Pharmacological treatment of central nervous system (CNS) disorders is difficult, because the blood-brain barrier (BBB) restricts the penetration of many drugs into the brain. To solve this unmet therapeutic need, nanosized drug carriers are the focus of research efforts to develop drug delivery systems for the CNS. For the successful delivery of nanoparticles (NPs) to the brain, targeting ligands on their surface is necessary.

View Article and Find Full Text PDF

Inefficient drug delivery across the blood-brain barrier (BBB) and into target cells in the brain hinders the treatment of neurological diseases. One strategy to increase the brain penetration of drugs is to use vesicular nanoparticles functionalized with multiple ligands of BBB transporters as vehicles. Once within the brain, however, drugs must also be able to reach their therapeutic targets in the different cell types.

View Article and Find Full Text PDF

Nanoparticles targeting transporters of the blood-brain barrier (BBB) are promising candidates to increase the brain penetration of biopharmacons. Solute carriers (SLC) are expressed at high levels in brain endothelial cells and show a specific pattern at the BBB. The aim of our study was to test glutathione and ligands of SLC transporters as single or dual BBB targeting molecules for nanovesicles.

View Article and Find Full Text PDF