Motivation: Chemical space embedding methods are widely utilized in various research settings for dimensional reduction, clustering and effective visualization. The maps generated by the embedding process can provide valuable insight to medicinal chemists in terms of the relationships between structural, physicochemical and biological properties of compounds. However, these maps are known to be difficult to interpret, and the ''landscape'' on the map is prone to ''rearrangement'' when embedding different sets of compounds.
View Article and Find Full Text PDFSynthesis route planning is in the core of chemical intelligence that will power the autonomous chemistry platforms. In this task, we rely on algorithms to generate possible synthesis routes with the help of retro- and forward-synthetic approaches. Generated synthesis routes can be merged into a synthesis graph which represents theoretical pathways to the target molecule.
View Article and Find Full Text PDFIn the event of an outbreak due to an emerging pathogen, time is of the essence to contain or to mitigate the spread of the disease. Drug repositioning is one of the strategies that has the potential to deliver therapeutics relatively quickly. The SARS-CoV-2 pandemic has shown that integrating critical data resources to drive drug-repositioning studies, involving host-host, host-pathogen, and drug-target interactions, remains a time-consuming effort that translates to a delay in the development and delivery of a life-saving therapy.
View Article and Find Full Text PDFEnviron Health Perspect
April 2021
Background: Humans are exposed to tens of thousands of chemical substances that need to be assessed for their potential toxicity. Acute systemic toxicity testing serves as the basis for regulatory hazard classification, labeling, and risk management. However, it is cost- and time-prohibitive to evaluate all new and existing chemicals using traditional rodent acute toxicity tests.
View Article and Find Full Text PDFEndoplasmic reticulum (ER) dysregulation is associated with pathologies including neurodegenerative, muscular, and diabetic conditions. Depletion of ER calcium can lead to the loss of resident proteins in a process termed exodosis. To identify compounds that attenuate the redistribution of ER proteins under pathological conditions, we performed a quantitative high-throughput screen using the Gaussia luciferase (GLuc)-secreted ER calcium modulated protein (SERCaMP) assay, which monitors secretion of ER-resident proteins triggered by calcium depletion.
View Article and Find Full Text PDFInnovating on the design and function of the chemical bench remains a quintessential challenge of the ages. It requires a deep understanding of the important role chemistry plays in scientific discovery as well a first principles approach to addressing the gaps in how work gets done at the bench. This perspective examines how one might explore designing and creating a sustainable new standard for advancing automated chemistry bench itself.
View Article and Find Full Text PDFMotivation: Drug discovery investigations need to incorporate network pharmacology concepts while navigating the complex landscape of drug-target and target-target interactions. This task requires solutions that integrate high-quality biomedical data, combined with analytic and predictive workflows as well as efficient visualization. SmartGraph is an innovative platform that utilizes state-of-the-art technologies such as a Neo4j graph-database, Angular web framework, RxJS asynchronous event library and D3 visualization to accomplish these goals.
View Article and Find Full Text PDFACS Pharmacol Transl Sci
December 2020
The first-line treatments for uncomplicated malaria are artemisinin-based combination therapies (ACTs), consisting of an artemisinin derivative combined with a longer acting partner drug. However, the spread of with decreased susceptibility to artemisinin and partner drugs presents a significant challenge to malaria control efforts. To stem the spread of drug resistant parasites, novel chemotherapeutic strategies are being evaluated, including the implementation of triple artemisinin-based combination therapies (TACTs).
View Article and Find Full Text PDFMotivation: In the event of an outbreak due to an emerging pathogen, time is of the essence to contain or to mitigate the spread of the disease. Drug repositioning is one of the strategies that has the potential to deliver therapeutics relatively quickly. The SARS-CoV-2 pandemic has shown that integrating critical data resources to drive drug-repositioning studies, involving host-host, hostpathogen and drug-target interactions, remains a time-consuming effort that translates to a delay in the development and delivery of a life-saving therapy.
View Article and Find Full Text PDFG-protein-gated inwardly rectifying K (GIRK) channels are essential effectors of inhibitory neurotransmission in the brain. GIRK channels have been implicated in diseases with abnormal neuronal excitability, including epilepsy and addiction. GIRK channels are tetramers composed of either the same subunit (e.
View Article and Find Full Text PDFNatural products and their derivatives continue to be wellsprings of nascent therapeutic potential. However, many laboratories have limited resources for biological evaluation, leaving their previously isolated or synthesized compounds largely or completely untested. To address this issue, the Canvass library of natural products was assembled, in collaboration with academic and industry researchers, for quantitative high-throughput screening (qHTS) across a diverse set of cell-based and biochemical assays.
View Article and Find Full Text PDFThis corrects the article DOI: 10.1038/nrd.2018.
View Article and Find Full Text PDFA large proportion of biomedical research and the development of therapeutics is focused on a small fraction of the human genome. In a strategic effort to map the knowledge gaps around proteins encoded by the human genome and to promote the exploration of currently understudied, but potentially druggable, proteins, the US National Institutes of Health launched the Illuminating the Druggable Genome (IDG) initiative in 2014. In this article, we discuss how the systematic collection and processing of a wide array of genomic, proteomic, chemical and disease-related resource data by the IDG Knowledge Management Center have enabled the development of evidence-based criteria for tracking the target development level (TDL) of human proteins, which indicates a substantial knowledge deficit for approximately one out of three proteins in the human proteome.
View Article and Find Full Text PDFThe increasing emergence of multidrug-resistant bacteria is recognized as a major threat to human health worldwide. While the use of small molecule antibiotics has enabled many modern medical advances, it has also facilitated the development of resistant organisms. This minireview provides an overview of current small molecule drugs approved by the US Food and Drug Administration (FDA) for use in humans, the unintended consequences of antibiotic use, and the mechanisms that underlie the development of drug resistance.
View Article and Find Full Text PDFBackground: Complex network theory based methods and the emergence of "Big Data" have reshaped the terrain of investigating structure-activity relationships of molecules. This change gave rise to new methods which need to face an important challenge, namely: how to restructure a large molecular dataset into a network that best serves the purpose of the subsequent analyses. With special focus on network clustering, our study addresses this open question by proposing a data transformation method and a clustering framework.
View Article and Find Full Text PDFMost drugs exert their effects via multitarget interactions, as hypothesized by polypharmacology. While these multitarget interactions are responsible for the clinical effect profiles of drugs, current methods have failed to uncover the complex relationships between them. Here, we introduce an approach which is able to relate complex drug-protein interaction profiles with effect profiles.
View Article and Find Full Text PDFBackground: Various pattern-based methods exist that use in vitro or in silico affinity profiles for classification and functional examination of proteins. Nevertheless, the connection between the protein affinity profiles and the structural characteristics of the binding sites is still unclear. Our aim was to investigate the association between virtual drug screening results (calculated binding free energy values) and the geometry of protein binding sites.
View Article and Find Full Text PDFBackground: Hierarchical clustering methods like Ward's method have been used since decades to understand biological and chemical data sets. In order to get a partition of the data set, it is necessary to choose an optimal level of the hierarchy by a so-called level selection algorithm. In 2005, a new kind of hierarchical clustering method was introduced by Palla et al.
View Article and Find Full Text PDF