Publications by authors named "Gergely Szalay"

Due to technical roadblocks, it is unclear how visual circuits represent multiple features or how behaviorally relevant representations are selected for long-term memory. Here we developed Moculus, a head-mounted virtual reality platform for mice that covers the entire visual field, and allows binocular depth perception and full visual immersion. This controllable environment, with three-dimensional (3D) corridors and 3D objects, in combination with 3D acousto-optical imaging, affords rapid visual learning and the uncovering of circuit substrates in one measurement session.

View Article and Find Full Text PDF

The advancements in targeted drug release and experimental neuroscience have amplified the scientific interest in photolabile protecting groups (PPGs) and photouncaging. The growing need for the detection of uncaging events has led to the development of reporters with fluorescence turn-on upon uncaging. In contrast, fluorescent tags with turn-off properties have been drastically underexplored, although there are applications where they would be sought after.

View Article and Find Full Text PDF

Background: The organism-wide effects of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral infection are well studied, but little is known about the dynamics of how the infection spreads in time among or within cells due to the scarcity of suitable high-resolution experimental systems. It has been reported that SARS-CoV-2 infection pathways converge at calcium influx and subcellular calcium distribution changes. Imaging combined with a proper staining technique is an effective tool for studying subcellular calcium-related infection and replication mechanisms at such resolutions.

View Article and Find Full Text PDF

Neocortex is classically divided into distinct areas, each specializing in different function, but all could benefit from reinforcement feedback to inform and update local processing. Yet it remains elusive how global signals like reward and punishment are represented in local cortical computations. Previously, we identified a cortical neuron type, vasoactive intestinal polypeptide (VIP)-expressing interneurons, in auditory cortex that is recruited by behavioral reinforcers and mediates disinhibitory control by inhibiting other inhibitory neurons.

View Article and Find Full Text PDF

Neuronal plasticity has been shown to be causally linked to coincidence detection through dendritic spikes (dSpikes). We demonstrate the existence of SPW-R-associated, branch-specific, local dSpikes and their computational role in basal dendrites of hippocampal PV+ interneurons in awake animals. To measure the entire dendritic arbor of long thin dendrites during SPW-Rs, we used fast 3D acousto-optical imaging through an eccentric deep-brain adapter and ipsilateral local field potential recording.

View Article and Find Full Text PDF

In this paper, we present an additional, new cage-GABA compound, called 4-amino-1-(4'-dimethylaminoisopropoxy-5',7'-dinitro-2',3'-dihydro-indol-1-yl)-1-oxobutane-γ-aminobutyric acid (iDMPO-DNI-GABA), and currently, this compound is the only photoreagent, which can be applied for GABA uncaging without experimental compromises. By a systematic theoretical design and successful synthesis of several compounds, the best reagent exhibits a high two-photon efficiency within the 700-760 nm range with excellent pharmacological behavior, which proved to be suitable for a complex epileptic study. Quantum chemical design showed that the optimal length of the cationic side chain enhances the two-photon absorption by 1 order of magnitude due to the cooperating internal hydrogen bonding to the extra nitro group on the core.

View Article and Find Full Text PDF

Infrared neural stimulation is a promising tool for stimulating the brain because it can be used to excite with high spatial precision without the need of delivering or inserting any exogenous agent into the tissue. Very few studies have explored its use in the brain, as most investigations have focused on sensory or motor nerve stimulation. Using intravital calcium imaging with the genetically encoded calcium indicator GCaMP6f, here we show that the application of infrared neural stimulation induces intracellular calcium signals in Layer 2/3 neurons in mouse cortex in vivo.

View Article and Find Full Text PDF

Neurotropic herpesviruses can establish lifelong infection in humans and contribute to severe diseases including encephalitis and neurodegeneration. However, the mechanisms through which the brain's immune system recognizes and controls viral infections propagating across synaptically linked neuronal circuits have remained unclear. Using a well-established model of alphaherpesvirus infection that reaches the brain exclusively via retrograde transsynaptic spread from the periphery, and in vivo two-photon imaging combined with high resolution microscopy, we show that microglia are recruited to and isolate infected neurons within hours.

View Article and Find Full Text PDF

Two-photon (TP) uncaging of neurotransmitter molecules is the method of choice to mimic and study the subtleties of neuronal communication either in the intact brain or in slice preparations. However, the currently available caged materials are just at the limit of their usability and have several drawbacks. The local and focal nature of their use may for example be jeopardized by a high spontaneous hydrolysis rate of the commercially available compounds with increased photochemical release rate.

View Article and Find Full Text PDF

Slow wave activity (SWA) is a characteristic brain oscillation in sleep and quiet wakefulness. Although the cell types contributing to SWA genesis are not yet identified, the principal role of neurons in the emergence of this essential cognitive mechanism has not been questioned. To address the possibility of astrocytic involvement in SWA, we used a transgenic rat line expressing a calcium sensitive fluorescent protein in both astrocytes and interneurons and simultaneously imaged astrocytic and neuronal activity in vivo.

View Article and Find Full Text PDF

Understanding neural computation requires methods such as 3D acousto-optical (AO) scanning that can simultaneously read out neural activity on both the somatic and dendritic scales. AO point scanning can increase measurement speed and signal-to-noise ratio (SNR) by several orders of magnitude, but high optical resolution requires long point-to-point switching time, which limits imaging capability. Here we present a novel technology, 3D DRIFT AO scanning, which can extend each scanning point to small 3D lines, surfaces, or volume elements for flexible and fast imaging of complex structures simultaneously in multiple locations.

View Article and Find Full Text PDF

Extracting neuronal spiking activity from large-scale two-photon recordings remains challenging, especially in mammals in vivo, where large noises often contaminate the signals. We propose a method, MLspike, which returns the most likely spike train underlying the measured calcium fluorescence. It relies on a physiological model including baseline fluctuations and distinct nonlinearities for synthetic and genetically encoded indicators.

View Article and Find Full Text PDF

Microglia are the main immune cells of the brain and contribute to common brain diseases. However, it is unclear how microglia influence neuronal activity and survival in the injured brain in vivo. Here we develop a precisely controlled model of brain injury induced by cerebral ischaemia combined with fast in vivo two-photon calcium imaging and selective microglial manipulation.

View Article and Find Full Text PDF

Erratum to the article published on December 27th 2015 in Issue 52 of Orvosi Hetilap [Orv. Hetil., 2015, 156(52), 2120-2126, DOI: 10.

View Article and Find Full Text PDF

Introduction: Two-photon microscopy is the ideal tool to study how signals are processed in the functional brain tissue. However, early raster scanning strategies were inadequate to record fast 3D events like action potentials.

Aim: The aim of the authors was to record various neuronal activity patterns with high signal-to-noise ratio in an optical manner.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers studied spontaneous synchronous population activity (SPA) in cortical slices from epileptic patients using electrophysiological methods and two-photon imaging to explore its network mechanisms.
  • They maintained brain tissue in a special dual perfusion chamber and recorded SPA while identifying active regions using 24-channel microelectrodes.
  • The combination of high-resolution imaging and electrophysiology allowed for detailed analysis of neuron interactions and their anatomy, providing insights into the human neocortex's structural and functional properties.
View Article and Find Full Text PDF

Individual cortical neurons can selectively respond to specific environmental features, such as visual motion or faces. How this relates to the selectivity of the presynaptic network across cortical layers remains unclear. We used single-cell-initiated, monosynaptically restricted retrograde transsynaptic tracing with rabies viruses expressing GCaMP6s to image, in vivo, the visual motion-evoked activity of individual layer 2/3 pyramidal neurons and their presynaptic networks across layers in mouse primary visual cortex.

View Article and Find Full Text PDF

Sharp-wave ripples are transient oscillatory events in the hippocampus that are associated with the reactivation of neuronal ensembles within specific circuits during memory formation. Fast-spiking, parvalbumin-expressing interneurons (FS-PV INs) are thought to provide fast integration in these oscillatory circuits by suppressing regenerative activity in their dendrites. Here, using fast 3D two-photon imaging and a caged glutamate, we challenge this classical view by demonstrating that FS-PV IN dendrites can generate propagating Ca(2+) spikes during sharp-wave ripples.

View Article and Find Full Text PDF

The understanding of brain computations requires methods that read out neural activity on different spatial and temporal scales. Following signal propagation and integration across a neuron and recording the concerted activity of hundreds of neurons pose distinct challenges, and the design of imaging systems has been mostly focused on tackling one of the two operations. We developed a high-resolution, acousto-optic two-photon microscope with continuous three-dimensional (3D) trajectory and random-access scanning modes that reaches near-cubic-millimeter scan range and can be adapted to imaging different spatial scales.

View Article and Find Full Text PDF