Drug resistance is a major obstacle in cancer treatment. Herein, four novel organometallic complexes, with the general formula [Ru(η--cymene)(HL)Cl]Cl and [Rh(η-CMe)(HL)Cl]Cl, were developed to target multidrug-resistant (MDR) cancer cells, where HL denotes 8-hydroxyquinoline-derived Mannich bases (HQCl-pyr and HQCl-pip). The aim of the complexation was to obtain compounds with improved drug-like properties.
View Article and Find Full Text PDFHuman single-stranded DNA binding protein 1 (hSSB1/NABP2/OBFC2B) plays central roles in DNA repair. Here, we show that purified hSSB1 undergoes redox-dependent liquid-liquid phase separation (LLPS) in the presence of single-stranded DNA or RNA, features that are distinct from those of LLPS by bacterial SSB. hSSB1 nucleoprotein droplets form under physiological ionic conditions in response to treatment modeling cellular oxidative stress.
View Article and Find Full Text PDFThe imidazole alkaloid lepidiline A from the root of has a moderate to low in vitro anticancer effect. Our aim was to extend cytotoxicity investigations against a panel of cancer cells, including multidrug-resistant cancer cells, and multipotent stem cells. Lepidiline A is a N-heterocyclic carbene precursor, therefore a suitable ligand source for metal complexes.
View Article and Find Full Text PDFBreast cancer, a complex disease with a significant prevalence to form metastases, necessitates novel therapeutic strategies to improve treatment outcomes. Here, we present the results of a comparative molecular study of primary breast tumours, their metastases, and the corresponding primary cell lines using Desorption Electrospray Ionisation (DESI) and Laser-Assisted Rapid Evaporative Ionisation Mass Spectrometry (LA-REIMS) imaging. Our results show that ambient ionisation mass spectrometry technology is suitable for rapid characterisation of samples, providing a lipid- and metabolite-rich spectrum within seconds.
View Article and Find Full Text PDFAmide bioisoterism is a widely used strategy in drug development to fine-tune physicochemical, pharmacokinetic, and metabolic properties, eliminate toxicity and gain intellectual property rights in uncharted chemical space. Of these, oxetane-amines offer particularly exciting possibilities as bioisosteres, although they are less frequently investigated than warranted due to the lack of simple and widely applicable synthetic methods. Herein, we report a two-step, practical, modular, robust, and scalable method for the construction of oxetane-containing amide bioisosteres that relies on the readily available oxetan-3-one.
View Article and Find Full Text PDFRecent years have ushered in a transformative era in in vitro modeling with the advent of organoids, three-dimensional structures derived from stem cells or patient tumor cells. Still, fully harnessing the potential of organoids requires advanced imaging technologies and analytical tools to quantitatively monitor organoid growth. Optical coherence tomography (OCT) is a promising imaging modality for organoid analysis due to its high-resolution, label-free, non-destructive, and real-time 3D imaging capabilities, but accurately identifying and quantifying organoids in OCT images remain challenging due to various factors.
View Article and Find Full Text PDFMesenchymal stem cells (MSCs) are an integral part of the tumor microenvironment (TME); however, their role is somewhat controversial: conflicting reports suggest that, depending on the stage of tumor development, MSCs can either support or suppress tumor growth and spread. Additionally, the influence of MSCs on drug resistance is also ambiguous. Previously, we showed that, despite MSCs proliferating significantly more slowly than cancer cells, there are chemotherapeutic drugs which proved to be similarly toxic to both cell types.
View Article and Find Full Text PDFN-(3-(dimethylamino)propyl-4-(8-hydroxyquinolin-6-yl)benzamide (ML324, HL) is a potent inhibitor of the iron-containing histone demethylase KDM4, a recognized potential target of cancer therapeutics. Herein, we report the proton dissociation and complex formation processes of ML324 with essential metal ions such as Fe(II), Fe(III), Cu(II) and Zn(II) using UV-visible, fluorescence, electron paramagnetic resonance and H NMR spectroscopic methods. The electrochemical behaviour of the copper and iron complexes was characterized by cyclic voltammetry and spectroelectrochemistry.
View Article and Find Full Text PDFTherapy resistance has long been considered to occur through the selection of pre-existing clones equipped to survive and quickly regrow, or through the acquisition of mutations during chemotherapy. Here we show that following in vitro treatment by chemotherapy, epithelial breast cancer cells adopt a transient drug tolerant phenotype characterized by cell cycle arrest, epithelial-to-mesenchymal transition (EMT) and the reversible upregulation of the multidrug resistance (MDR) efflux transporter P-glycoprotein (P-gp). The drug tolerant persister (DTP) state is reversible, as cells eventually resume proliferation, giving rise to a cell population resembling the initial, drug-naïve cell lines.
View Article and Find Full Text PDFThe BCL-2 inhibitor Venetoclax is a promising agent for the treatment of acute myeloid leukemia (AML). However, many patients are refractory to Venetoclax, and resistance develops quickly. ATP-binding cassette (ABC) transporters mediate chemotherapy resistance but their role in modulating the activity of targeted small-molecule inhibitors is unclear.
View Article and Find Full Text PDFG12C mutant KRas is considered druggable by allele-specific covalent inhibitors due to the nucleophilic character of the oncogenic mutant cysteine at position 12. Discovery of these inhibitors requires the optimization of both covalent and noncovalent interactions. Here, we report covalent fragment screening of our electrophilic fragment library of diverse non-covalent scaffolds equipped with 40 different electrophilic functionalities to identify fragments as suitable starting points targeting Cys12.
View Article and Find Full Text PDFABCG2 is an exporter-type ABC protein that can expel numerous chemically unrelated xeno- and endobiotics from cells. When expressed in tumor cells or tumor stem cells, ABCG2 confers multidrug resistance, contributing to the failure of chemotherapy. Molecular details orchestrating substrate translocation and ATP hydrolysis remain elusive.
View Article and Find Full Text PDFMultidrug resistance (MDR) in cancer is one of the major obstacles of chemotherapy. We have recently identified a series of 8-hydroxyquinoline Mannich base derivatives with MDR-selective toxicity, however with limited solubility. In this work, a novel 5-nitro-8-hydroxyquinoline-proline hybrid and its Rh(η5-C5Me5) and Ru(η6-p-cymene) complexes with excellent aqueous solubility were developed, characterized, and tested against sensitive and MDR cells.
View Article and Find Full Text PDFMesenchymal stem cells (MSCs) or fibroblasts are one of the most abundant cell types in the tumor microenvironment (TME) exerting various anti- and pro-apoptotic effects during tumorigenesis, invasion, and drug treatment. Despite the recently discovered importance of MSCs in tumor progression and therapy, the response of these cells to chemotherapeutics compared to cancer cells is rarely investigated. A widely accepted view is that these naive MSCs have higher drug tolerance than cancer cells due to a significantly lower proliferation rate.
View Article and Find Full Text PDFVarious mechanisms are known to be involved in the development of multidrug resistance during cancer treatment. P-glycoprotein (P-gp) decreases the intracellular concentrations of cytotoxic drugs by an energy-dependent efflux mechanism. The aim of this study was to investigate the predictive value of P-gp function based on the evaluation of P-gp activity in tumor cells obtained from canine B-cell lymphoma patients at diagnosis.
View Article and Find Full Text PDFSince the first application of natural quinine as an anti-malarial drug, cinchona alkaloids and their derivatives have been exhaustively studied for their biological activity. In our work, we tested 13 cinchona alkaloid organocatalysts, synthesised from quinine. These derivatives were screened against MES-SA and Dx5 uterine sarcoma cell lines for in vitro anticancer activity and to investigate their potential to overcome P-glycoprotein (P-gp) mediated multidrug resistance (MDR).
View Article and Find Full Text PDFA recently proposed strategy to overcome multidrug resistance (MDR) in cancer is to target the collateral sensitivity of otherwise resistant cells. We designed a library of 120 compounds to explore the chemical space around previously identified 8-hydroxyquinoline-derived Mannich bases with robust MDR-selective toxicity. We included compounds to study the effect of halogen and alkoxymethyl substitutions in R5 in combination with different Mannich bases in R7, a shift of the Mannich base from R7 to R5, as well as the introduction of an aromatic moiety.
View Article and Find Full Text PDFAn efficient method applying acyl chlorides as reagents was developed for the acylation of the hindered hydroxy group of dialkyl α-hydroxy-benzylphosphonates. The procedure did not require any catalyst. A few acylations were also performed with the -enantiomer of dimethyl α-hydroxy-benzylphosphonate, and the optical purity was retained.
View Article and Find Full Text PDFIntegration of statistical learning methods with structure-based modeling approaches is a contemporary strategy to identify novel lead compounds in drug discovery. Hepatic organic anion transporting polypeptides (OATP1B1, OATP1B3, and OATP2B1) are classical off-targets, and it is well recognized that their ability to interfere with a wide range of chemically unrelated drugs, environmental chemicals, or food additives can lead to unwanted adverse effects like liver toxicity and drug-drug or drug-food interactions. Therefore, the identification of novel (tool) compounds for hepatic OATPs by virtual screening approaches and subsequent experimental validation is a major asset for elucidating structure-function relationships of (related) transporters: they enhance our understanding about molecular determinants and structural aspects of hepatic OATPs driving ligand binding and selectivity.
View Article and Find Full Text PDFMelanoma-associated fibroblasts (MAFs) are integral parts of melanoma, providing a protective network for melanoma cells. The phenotypical and functional similarities between MAFs and mesenchymal stromal cells (MSCs) prompted us to investigate if, similarly to MSCs, MAFs are capable of modulating macrophage functions. Using immunohistochemistry, we showed that MAFs and macrophages are in intimate contact within the tumor stroma.
View Article and Find Full Text PDFHepatic organic anion transporting polypeptides-OATP1B1, OATP1B3, and OATP2B1-are expressed at the basolateral membrane of hepatocytes, being responsible for the uptake of a wide range of natural substrates and structurally unrelated pharmaceuticals. Impaired function of hepatic OATPs has been linked to clinically relevant drug-drug interactions leading to altered pharmacokinetics of administered drugs. Therefore, understanding the commonalities and differences across the three transporters represents useful knowledge to guide the drug discovery process at an early stage.
View Article and Find Full Text PDFThere are about 14 million new cancer cases and 8 million deaths every year. Every second man and one in every three women will get cancer during their lifetimes. Following decades of steady increase, death rates have stabilized due to increased awareness and prevention, early detection, and the emergence of more effective therapy.
View Article and Find Full Text PDFChemotherapy plays an important role in the treatment of cancer. While clinical chemotherapy protocols can lead to remission in some patients, in many cases tumor progression occurs despite continued treatment. In the present study we summarize mathematical approaches to model tumor growth and response to treatment, focusing on anticancer therapy resistance.
View Article and Find Full Text PDF