Publications by authors named "Gergely C"

The development of bone adhesive materials is a research field of high relevance for the advancement of clinical procedures. Despite this, there are currently no material candidates meeting the full range of requirements placed on such a material, such as biocompatibility, sufficient mechanical properties and bond strength under biological conditions, practical applicability in a clinical setting, and no adverse effect on the healing process itself. A serious obstacle to the advancement of the field is a lack in standardized methodology leading to comparable results between experiments and different research groups.

View Article and Find Full Text PDF

The degeneration of spiral ganglion neurons (SGNs), which convey auditory signals from hair cells to the brain, can be a primary cause of sensorineural hearing loss (SNHL) or can occur secondary to hair cell loss. Emerging therapies for SNHL include the replacement of damaged SGNs using stem cell-derived otic neuronal progenitors (ONPs). However, the availability of renewable, accessible, and patient-matched sources of human stem cells is a prerequisite for successful replacement of the auditory nerve.

View Article and Find Full Text PDF

In dental practice, Regenerative Endodontic Treatment (RET) is applied as an alternative to classical endodontic treatments of immature necrotic teeth. This procedure, also known as dental pulp revitalization, relies on the formation of a blood clot inside the root canal leading to the formation of a reparative vascularized tissue similar to dental pulp, which would provide vitality to the affected tooth. Despite the benefit of this technique, it lacks reproducibility due to the fast degradation and poor mechanical properties of blood clots.

View Article and Find Full Text PDF

Spinal cord injury is a dramatic disease leading to severe motor, sensitive and autonomic impairments. After injury the axonal regeneration is partly inhibited by the glial scar, acting as a physical and chemical barrier. The scarring process involves microglia, astrocytes and extracellular matrix components, such as collagen, constructing the fibrotic component of the scar.

View Article and Find Full Text PDF

Nucleotides are organic compounds consisting of a phosphate group, a nitrogenous base, namely adenine (A), thymine (T), cytosine (C), or guanine (G), and a sugar, here deoxyribose. The magnitude of the first hyperpolarizability β of these four DNA nucleotides was determined in aqueous solution with the nonlinear optical technique of hyper rayleigh scattering under non resonant conditions at a fundamental wavelength of 800 nm. The smallest value is found to be 1.

View Article and Find Full Text PDF

The functionalization of titanium (Ti) and titanium alloys (Ti6Al4V) implant surfaces via material-specific peptides influence host/biomaterial interaction. The impact of using peptides as molecular linkers between cells and implant material to improve keratinocyte adhesion is reported. The metal binding peptides (MBP-1, MBP-2) SVSVGMKPSPRP and WDPPTLKRPVSP were selected via phage display and combined with laminin-5 or E-cadherin epithelial cell specific peptides (CSP-1, CSP-2) to engineer four metal-cell specific peptides (MCSPs).

View Article and Find Full Text PDF

Objective: Dentin, enamel and the transition zone, called the dentin-enamel junction (DEJ), have an organization and properties that play a critical role in tooth resilience and in stopping the propagation of cracks. Understanding their chemical and micro-biomechanical properties is then of foremost importance. The aim of this study is to apply Brillouin microscopy on a complex biological structure, that is, the DEJ, and to compare these results with those obtained with Raman microscopy.

View Article and Find Full Text PDF

Major challenges in biofabrication revolve around capturing the complex, hierarchical composition of native tissues. However, individual 3D printing techniques have limited capacity to produce composite biomaterials with multi-scale resolution. Volumetric bioprinting recently emerged as a paradigm-shift in biofabrication.

View Article and Find Full Text PDF

Sarcomere length (SL) and its variation along the myofibril strongly regulate integrated coordinated myocyte contraction. It is therefore important to obtain individual SL properties. Optical imaging by confocal fluorescence (for example, using ANEPPS) or transmitted light microscopy is often used for this purpose.

View Article and Find Full Text PDF

Nanoindentation based on atomic force microscopy (AFM) can measure the elasticity of biomaterials and cells with high spatial resolution and sensitivity, but relating the data to quantitative mechanical properties depends on information on the local contact, which is unclear in most cases. Here, we demonstrate nonlocal deformation sensing on biorelevant soft matters upon AFM indentation by using nitrogen-vacancy centers in nanodiamonds, providing data for studying both the elasticity and capillarity without requiring detailed knowledge about the local contact. Using fixed HeLa cells for demonstration, we show that the apparent elastic moduli of the cells would have been overestimated if the capillarity was not considered.

View Article and Find Full Text PDF

The molecular and cellular mechanisms associated with tissue degradation or regeneration in an infectious context are poorly defined. Herein, we explored the role of macrophages in orchestrating either tissue regeneration or degradation in zebrafish embryos pre-infected with the fish pathogen . Zebrafish were inoculated with different infectious doses of prior to fin resection.

View Article and Find Full Text PDF

Motivation: Cardiomyocytes derived from stem cells are closely followed, notably since the discovery in 2007 of human induced pluripotent stem cells (hiPSC). Cardiomyocytes (hiPSC-CM) derived from hiPSC are indeed more and more used to study specific cardiac diseases as well as for developing novel applications such as drug safety experiments. Robust dedicated tools to characterize hiPSC-CM are now required.

View Article and Find Full Text PDF

With their potent regenerative and protective capacities, stem cell-derived conditioned media emerged as an effective alternative to cell therapy, and have a prospect to be manufactured as pharmaceutical products for tissue regeneration applications. Our study investigates the neuroregenerative potential of human dental pulp cells (DPCs) conditioned medium (CM) and defines an optimization strategy of DPC-CM for enhanced neuronal outgrowth. Primary sensory neurons from mouse dorsal root ganglia were cultured with or without DPC-CM, and the lengths of βIII-tubulin positive neurites were measured.

View Article and Find Full Text PDF

Biological activities of cells such as survival and differentiation processes are mainly maintained by a specific extracellular matrix (ECM). Hydrogels have recently been employed successfully in tissue engineering applications. In particular, scaffolds made of gelatin methacrylate-based hydrogels (GelMA) showed great potential due to their biocompatibility, biofunctionality, and low mechanical strength.

View Article and Find Full Text PDF

Social play is a highly rewarding and motivated behaviour displayed by juveniles of many mammalian species. We hypothesized that the orexin/hypocretin (ORX) system is involved in the expression of juvenile social play behaviour because this system is interconnected with brain regions that comprise the social behaviour and mesocorticolimbic reward networks. We found that exposure to social play increased recruitment of ORX-A neurons in juvenile rats.

View Article and Find Full Text PDF

Duchenne muscular dystrophy (DMD) is a debilitating disorder related to dystrophin encoding gene mutations, often associated with dilated cardiomyopathy. However, it is still unclear how dystrophin deficiency affects cardiac sarcomere remodeling and contractile dysfunction. We employed second harmonic generation (SHG) microscopy, a nonlinear optical imaging technique that allows studying contractile apparatus organization without histologic fixation and immunostaining.

View Article and Find Full Text PDF

Photobiomodulation (PBM) has been shown to improve cell proliferation and cell migration. Many cell types have been investigated, with most studies using deep penetrating red light irradiation. Considering the interest of surface biostimulation of oral mesenchymal cells after surgical wound, the present study aimed to assess green light irradiation effects on Dental Pulp Stem Cells' (DPSC) proliferation and migration.

View Article and Find Full Text PDF
Article Synopsis
  • Fluorescent nanodiamond particles with nitrogen-vacancy centers are emerging as powerful tools for cellular imaging and quantum sensing, requiring precise localization within living cells.
  • A new method is proposed that combines detection of the NV center signals with specific Raman signals to visualize the cell nucleus, overcoming limitations of traditional Raman imaging techniques.
  • This innovative approach enables the detection and chemical localization of nanodiamonds within cells without needing labeling or fixation, serving as a foundation for future applications in red- and near-infrared luminescent probes with quantum sensing capabilities.
View Article and Find Full Text PDF

We report the functionalization of chalcogenide thin films with biotinylated 12-mer peptides SVSVGMKPSPRP and LLADTTHHRPWT exhibiting a high binding affinity toward inorganic surfaces, on the one hand, and with (3-aminopropyl)triethoxysilane (APTES), on the other hand. The specific biotin moieties were used to bind streptavidin proteins and demonstrate the efficacy of the biofunctionalizated chalcogenide thin films to capture biomolecules. Atomic force microscopy provided high-resolution images of the interfaces, and water contact angle measurements gave insight into the interaction mechanisms.

View Article and Find Full Text PDF

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that selectively affects upper and lower motoneurons. Dismantlement of the neuromuscular junction (NMJ) is an early pathological hallmark of the disease whose cellular origin remains still debated. We developed an in vitro NMJ model to investigate the differential contribution of motoneurons and muscle cells expressing ALS-causing mutation in the superoxide dismutase 1 (SOD1) to neuromuscular dysfunction.

View Article and Find Full Text PDF

The development of new diagnostic technologies based on the light scattering and autofluorescence properties of dental tissues is required to improve the diagnostic ability of initial caries lesions earlier than previously done and promoting the potential of treatment without surgical intervention. The aim of this study is to correlate fluorescence-based results provided by multiphoton microscopy (MPM) with confocal Raman microscopy records using phosphate level at 960 cm-1 and the organic matrix at ∼2,931 cm-1 in healthy and demineralized human enamel. Measurements on 14 teeth were made using two incident lights of different wavelengths, released by confocal Raman microscopy and MPM.

View Article and Find Full Text PDF

Chronic kidney disease is characterized by a gradual decline in renal function that progresses toward end-stage renal disease. Podocytes are highly specialized glomerular epithelial cells which form with the glomerular basement membrane (GBM) and capillary endothelium the glomerular filtration barrier. GBM is an extracellular matrix (ECM) that acts as a mechanical support and provides biophysical signals that control normal podocytes behavior in the process of glomerular filtration.

View Article and Find Full Text PDF

Microgels specific structural and functional features are attracting high research interest in several applications such as bioactives and drug delivery or functional food ingredients. Whey protein microgels (WPM) are obtained by heat treatment of whey protein isolate (WPI) in order to promote intramolecular cross-linking. In the present work, atomic force microscopy (AFM) was used in contact mode and in liquid to investigate WPM particles topography and mechanical properties at the nanoscale at native pH (6.

View Article and Find Full Text PDF

Extensive use of porous silicon (PSi) for tissue engineering is due to its convenient properties as it is both nontoxic and bioresorbable. Moreover, PSi surface modification is an important step to enhance cell adhesion and proliferation. In this work, a combination of optical and electrochemical studies is performed to elaborate a suitable PSi multilayer substrate for cell culture.

View Article and Find Full Text PDF