We theoretically derive and validate with large scale simulations a remarkably accurate power law scaling of errors for the restricted active space density matrix renormalization group (DMRG-RAS) method [J. Phys. Chem.
View Article and Find Full Text PDFWe present an alternative, memory-efficient, Schmidt decomposition-based description of the inherently bipartite restricted active space (RAS) scheme, which can be implemented effortlessly within the density matrix renormalization group (DMRG) method via the dynamically extended active space procedure. Benchmark calculations are compared against state-of-the-art results of C and Cr, which are notorious for their multireference character. Our results for ground and excited states together with spectroscopic constants demonstrate that the proposed novel approach, dubbed as DMRG-RAS, which is variational and free of uncontrolled method errors, has the potential to outperfom conventional methods for strongly correlated molecules.
View Article and Find Full Text PDFCoupled cluster calculations are traditionally performed over Hartree-Fock reference orbitals (HF-CC methodology). However, in the literature it has been repeatedly raised whether the use of a Kohn-Sham reference (KS-CC methodology) might result in improved performance relative to HF-CC. In the present study, we re-examine the relation of HF-CC and KS-CC methods by comparing the results of widely applied truncated CC calculations (CCSD, CCSD(T), CCSDT) to the limit of full configuration interaction (FCI), which serves as an undebatable reference point of accuracy.
View Article and Find Full Text PDFJ Chem Theory Comput
February 2021
In this paper, we analyze the numerical aspects of the inherent multireference density matrix renormalization group (DMRG) calculations on top of the periodic Kohn-Sham density functional theory using the complete active space approach. The potential of the framework is illustrated by studying hexagonal boron nitride nanoflakes embedding a charged single boron vacancy point defect by revealing a vertical energy spectrum with a prominent multireference character. We investigate the consistency of the DMRG energy spectrum from the perspective of sample size, basis size, and active space selection protocol.
View Article and Find Full Text PDFRecently, the correlation theory of the chemical bond was developed, which applies concepts of quantum information theory for the characterization of chemical bonds, based on the multiorbital correlations within the molecule. Here, for the first time, we extend the use of this mathematical toolbox for the description of electron-deficient bonds. We start by verifying the theory on the textbook example of a molecule with three-center two-electron bonds, namely, diborane(6).
View Article and Find Full Text PDFThe quantum mechanical description of the chemical bond is generally given in terms of delocalized bonding orbitals, or, alternatively, in terms of correlations of occupations of localised orbitals. However, in the latter case, multiorbital correlations were treated only in terms of two-orbital correlations, although the structure of multiorbital correlations is far richer; and, in the case of bonds established by more than two electrons, multiorbital correlations represent a more natural point of view. Here, for the first time, we introduce the true multiorbital correlation theory, consisting of a framework for handling the structure of multiorbital correlations, a toolbox of true multiorbital correlation measures, and the formulation of the multiorbital correlation clustering, together with an algorithm for obtaining that.
View Article and Find Full Text PDFQuantum chemistry calculations provide the potential energy between two carbon atoms in ethane (H3C-CH3), ethene (H2C[double bond, length as m-dash]CH2), and ethyne (HC[triple bond, length as m-dash]CH) as a function of the atomic distance. Based on the energy function for the σ-bond in ethane, Vσ(r), we use the Hückel model with Hubbard-Ohno interaction for the π electrons to describe the energies Vσπ(r) and Vσππ(r) for the σπ double bond in ethene and the σππ triple bond in ethyne, respectively. The fit of the force functions shows that the electron transfer matrix element and the Peierls coupling can be estimated with some precision whereas the Hubbard-Ohno parameters are insignificant at the distances under consideration.
View Article and Find Full Text PDFThe accurate calculation of the (differential) correlation energy is central to the quantum chemical description of bond-formation and bond-dissociation processes. In order to estimate the quality of single- and multireference approaches for this purpose, various diagnostic tools have been developed. In this work, we elaborate on our previous observation [J.
View Article and Find Full Text PDF