Federated multipartner machine learning has been touted as an appealing and efficient method to increase the effective training data volume and thereby the predictivity of models, particularly when the generation of training data is resource-intensive. In the landmark MELLODDY project, indeed, each of ten pharmaceutical companies realized aggregated improvements on its own classification or regression models through federated learning. To this end, they leveraged a novel implementation extending multitask learning across partners, on a platform audited for privacy and security.
View Article and Find Full Text PDFVoluntary isolation is one of the most effective methods for individuals to help prevent the transmission of diseases such as COVID-19. Understanding why people leave their homes when advised not to do so and identifying what contextual factors predict this non-compliant behavior is essential for policymakers and public health officials. To provide insight on these factors, we collected data from 42,169 individuals across 16 countries.
View Article and Find Full Text PDF