We present an IR-PD study of tantalum cluster adsorbate complexes [Tan(N2)m]+, abbreviated (n,m), n = 5-8. We utilize infrared spectroscopy of isolated and size selected clusters as prepared and characterized by a cryogenic tandem ion trap setup, and we augment our experiments with quantum chemical simulations at the level of density functional theory. The cluster adsorbate complexes (n,m) reveal vibrational bands above 2000 cm-1, which indicate end-on coordinated μ1-N2 oscillators, and bands below 2000 cm-1, which indicate side-on μ2-κN:κN,N coordinated ones.
View Article and Find Full Text PDFWe investigate small tantalum clusters Tan+, n = 2-4, for their capability to cleave N2 adsorption spontaneously. We utilize infrared photon dissociation (IR-PD) spectroscopy of isolated and size selected clusters under cryogenic conditions within a buffer gas filled ion trap, and we augment our experiments by quantum chemical simulations (at DFT level). All Tan+ clusters, n = 2-4, seem to cleave N2 efficiently.
View Article and Find Full Text PDFDimedone and its derivates are used as selective probes for the nucleophilic detection of sulfenic acids in biological samples. Qualitative analyses suggested that dimedone also reacts with cyclic sulfenamides. Furthermore, under physiological conditions, dimedone must compete with the highly concentrated nucleophile glutathione.
View Article and Find Full Text PDFPhotoactive complexes with earth-abundant metals have attracted increasing interest in the recent years fueled by the promise of sustainable photochemistry. However, sophisticated ligands with complicated syntheses are oftentimes required to enable photoactivity with nonprecious metals. Here, we combine a cheap metal with simple ligands to easily access a photoactive complex.
View Article and Find Full Text PDFIn this report, we present the dinuclear copper(II) dimethylglyoxime (H dmg) complex [Cu (H dmg)(Hdmg)(dmg)] (1), which, in contrast to its mononuclear analogue [Cu(Hdmg) ] (2), is subject to a cooperativity-driven hydrolysis. The combined Lewis acidity of both copper centers increases the electrophilicity of the carbon atom in the bridging μ -O-N=C-group of H dmg and thus, facilitates the nucleophilic attack of H O. This hydrolysis yields butane-2,3-dione monoxime (3) and NH OH that, depending on the solvent, is then either oxidized or reduced.
View Article and Find Full Text PDFChemistry
September 2022
Invited for the cover of this issue are Gereon Niedner-Schatteburg, Biprajit Sarkar and co-worker at TU Kaiserslautern and the University of Stuttgart. The image depicts the selective dissociation of an axial CO from a metal complex. Read the full text of the article at 10.
View Article and Find Full Text PDFIn this study, we present a slight but surprisingly successful structural modification of the previously reported heteroleptic Cu(I) photosensitizer ([(xantphos)Cu(biipo)]PF; = 16-benzo-[4',5']-isoquinolino-[2',1':1,2]-imidazo-[4,5-]-[1,10]-phenanthrolin-16-one). As a key feature, bears a naphthalimide unit at the back, which is directly fused to a phenanthroline moiety to extend the conjugated π-system. This ligand was now altered to include two additional methyl groups at the 2,9-positions at the phenanthroline scaffold.
View Article and Find Full Text PDFChemistry
September 2022
This work tackles the photochemistry of a series of mononuclear Cr , Mo and W carbonyl complexes containing a bidentate mesoionic carbene ligand of the 1,2,3-triazol-5-ylidene type. FTIR spectroscopy, combined with density functional theory calculations, revealed a clean photo-induced reaction in organic solvents (acetonitrile, pyridine, valeronitrile) to give mainly one photoproduct with monosubstitution of a carbonyl ligand for a solvent molecule. The highest photodissociation quantum yields were reached for the Cr complex under UV irradiation (266 nm).
View Article and Find Full Text PDFCr(ppy), a structural analog of the green phosphorescent Ir(ppy), emits even in solution at room temperature from a weakly distorted spin-flip state at 910 nm (Hppy = 2-phenylpyridine). The low energy arises from an enhanced covalence of the Cr-C bonds as compared to Cr-N bonds. Lower temperature reduces thermally activated decay increasing the emission intensity.
View Article and Find Full Text PDFWe report the N cryo adsorption kinetics of selected gas phase mixed rhodium-iron clusters [RhFe] in the range of i = 3-8 and j = 3-8 in 26 K He buffer gas by the use of a cryo tandem RF-hexapole trap-Fourier transform ion cyclotron resonance mass spectrometer. From kinetic data and fits, we extract relative rate constants for each N adsorption step and possible desorption steps. We find significant trends in adsorption behavior, which reveal adsorption limits, intermittent adsorption limits, and equilibrium reactions.
View Article and Find Full Text PDFWe investigated the N adsorption behavior of bimetallic rhodium-iron cluster cations [RhFe(N)] by means of InfraRed MultiplePhotoDissociation (IR-MPD) spectroscopy in comparison with density functional theory (DFT) modeling. This approach allows us to refine our kinetic results [Ehrhard et al., J.
View Article and Find Full Text PDFInfrared photodissociation (IR-PD) spectra of iron cluster dinitrogen adsorbate complexes [Fe(N)] for n = 8-20 reveal slightly redshifted IR active bands in the region of 2200-2340 cm. These bands mostly relate to stretching vibrations of end-on coordinated N chromophores, a μ end-on binding motif. Density Functional Theory (DFT) modeling and detailed analysis of n = 13 complexes are consistent with an icosahedral Fe core structure.
View Article and Find Full Text PDFWe present a study of stepwise cryogenic N adsorption on size-selected Fe (n = 8-20) clusters within a hexapole collision cell held at T = 21-28 K. The stoichiometries of the observed adsorption limits and the kinetic fits of stepwise N uptake reveal cluster size-dependent variations that characterize four structural regions. Exploratory density functional theory studies support tentative structural assignment in terms of icosahedral, hexagonal antiprismatic, and closely packed structural motifs.
View Article and Find Full Text PDFThe phenomenon of single molecule magnet (SMM) behavior of mixed valent Mn coordination clusters of general formula [Mn Mn O (RCOO) (H O) ] had been exemplified by bulk samples of the archetypal [Mn Mn O (CH COO) (H O) ] (4) molecule, and the molecular origin of the observed magnetic behavior has found support from extensive studies on the Mn system within crystalline material or on molecules attached to a variety of surfaces. Here we report the magnetic signature of the isolated cationic species [Mn O (CH COO) (CH CN)] (1) by gas phase X-ray Magnetic Circular Dichroism (XMCD) spectroscopy, and we find it closely resembling that of the corresponding bulk samples. Furthermore, we report broken symmetry DFT calculations of spin densities and single ion tensors of the isolated, optimized complexes [Mn O (CH COO) (CH CN)] (1), [Mn O (CH COO) ] (2), [Mn O (CH COO) (H O) ] (3), and the complex in bulk geometry [Mn Mn O (CH COO) (H O) ] (5).
View Article and Find Full Text PDFA unique feature of the work carried out in the Collaborative Research Center 3MET continues to be its emphasis on innovative, advanced experimental methods which hyphenate mass-selection with further analytical tools such as laser spectroscopy for the study of isolated molecular ions. This allows to probe the intrinsic properties of the species of interest free of perturbing solvent or matrix effects. This review explains these methods and uses examples from past and ongoing 3MET studies of specific classes of multicenter metal complexes to illustrate how coordination chemistry can be advanced by applying them.
View Article and Find Full Text PDFWe report the binding geometries of the isomers that are formed when the hydrogen oxalate ((CO ) H=HOx) anion attaches to dinuclear coinage metal phosphine complexes of the form [M M dcpm (HOx)] with M=Cu, Ag and dcpm=bis(dicyclohexylphosphino)methane, abbreviated [MM] . These structures are established by comparison of isomer-selective experimental vibrational band patterns displayed by the cryogenically cooled and N -tagged cations with DFT calculations of the predicted spectra for various local minima. Two isomeric classes are identified that feature either attachment of the carboxylate oxygen atoms to the two metal centers (end-on docking) or attachment of oxygen atoms on different carbon atoms asymmetrically to the metal ions (side-on docking).
View Article and Find Full Text PDFIn spite of intense, recent research efforts, luminescent transition metal complexes with Earth-abundant metals are still very rare owing to the small ligand field splitting of 3d transition metal complexes and the resulting non-emissive low-energy metal-centered states. Low-energy excited states decay efficiently non-radiatively, so that near-infrared emissive transition metal complexes with 3d transition metals are even more challenging. We report that the heteroleptic pseudo-octahedral d-vanadium(iii) complex VCl(ddpd) (ddpd = ,'-dimethyl-,'-dipyridine-2-yl-pyridine-2,6-diamine) shows near-infrared singlet → triplet spin-flip phosphorescence maxima at 1102, 1219 and 1256 nm with a lifetime of 0.
View Article and Find Full Text PDFNucleophilic substitution of [(η -cyclopentadienyl)(η -chlorobenzene)iron(II)] hexafluorophosphate with sodium imidazolate resulted in the formation of [(η -cyclopentadienyl)(η -phenyl)iron(II)]imidazole hexafluorophosphate. The corresponding dicationic imidazolium salt, which was obtained by treating this imidazole precursor with methyl iodide, underwent cyclometallation with bis[dichlorido(η -1,2,3,4,5-pentamethylcyclopentadienyl]iridium(III) in the presence of triethyl amine. The resulting bimetallic iridium(III) complex is the first example of an NHC complex bearing a cationic and cyclometallated [(η -cyclopentadienyl)(η -phenyl)iron(II)] substituent.
View Article and Find Full Text PDFWe present a straightforward and generally applicable synthesis route for cofacially linked homo- and heterotrimetallic trisporphyin complexes. The protocol encompasses synthesising the first aryl-based, trans-o-phenylene trisporphyrin starting from pyrrole and benzaldehyde with an overall yield of 3.6 %.
View Article and Find Full Text PDFGaining chemical control over the thermodynamics and kinetics of photoexcited states is paramount to an efficient and sustainable utilization of photoactive transition metal complexes in a plethora of technologies. In contrast to energies of charge transfer states described by spatially separated orbitals, the energies of spin-flip states cannot straightforwardly be predicted as Pauli repulsion and the nephelauxetic effect play key roles. Guided by multireference quantum chemical calculations, we report a novel highly luminescent spin-flip emitter with a quantum chemically predicted blue-shifted luminescence.
View Article and Find Full Text PDFThe development of NIR emitters based on earth-abundant elements is an important goal in contemporary science. We present here Cr(0), Mo(0), and W(0) carbonyl complexes with a pyridyl-mesoionic carbene (MIC) based ligand. A detailed photophysical investigation shows that all the complexes exhibit dual emissions in the VIS and in the NIR region.
View Article and Find Full Text PDFThe development of photoactive transition metal complexes with Earth-abundant metals is a rapidly growing research field, where a deeper understanding of the underlying photophysical processes is of great importance. A multitude of potential applications in the fields of photosensitizing, optical sensing, photoluminescence and photoredox catalysis motivates demanding spectroscopic studies. We applied a series of high-level spectroscopic methods on the previously reported highly luminescent chromium(iii) complex [Cr(ddpd)2](BF4)3 (ddpd = N,N'-dimethyl-N,N'-dipyridine-2-ylpyridine-2,6-diamine) possessing two near-IR emissive doublet states with microsecond lifetimes.
View Article and Find Full Text PDF