The phase width of the copper hydroxycarbonate malachite, CuCO(OH), upon substitution with magnesium has been studied in detail. In extension of a previous study on amorphous precursors, the introduction of a hydrothermal aging step allowed the retrieval of crystalline hydroxycarbonate samples with up to 37 atom % Mg (metal content) that are suitable candidates as precursors to Cu/MgO catalysts for CO hydrogenation. Simultaneous refinements of X-ray powder diffraction and pair distribution function (PDF) data as well as complementary spectroscopic insight (X-ray absorption and infrared spectroscopy) revealed that samples with up to 18 atom % Mg are phase-pure magnesian malachites but the magnesium content can be increased beyond this threshold when mcguinnessite (CuMgCO(OH)) is accepted as a side phase.
View Article and Find Full Text PDFTernary compounds of copper indium selenide nano- and microsized materials were prepared through colloidal synthesis using an indium(III) selenide precursor and copper(I) chloride via a microwave-assisted ionothermal route. The indium(III) selenide precursor used in the reaction was formed in situ from a diphenyl diselenide precursor and chloroindate(III) ionic liquids (ILs), also via a microwave-assisted ionothermal route. The crystal structures of three intermediates, namely, CuCl2(OMe)2(H2O)){Cu(PhSeO2)2}n, [CuCl(Se2Ph2)2]n, and [C8mim]3{Cu(I)Cl2Cu(II)OCl8}n, were determined after formation through a ionothermal procedure utilizing metal-containing imidazolium ILs and a selenium precursor with conventional heating.
View Article and Find Full Text PDF