It has been proposed that positive selection may be associated with protein functional change. For example, human and macaque have different outcomes to HIV infection and it has been shown that residues under positive selection in the macaque TRIM5α receptor locate to the region known to influence species-specific response to HIV. In general, however, the relationship between sequence and function has proven difficult to fully elucidate, and it is the role of large-scale studies to help bridge this gap in our understanding by revealing major patterns in the data that correlate genotype with function or phenotype.
View Article and Find Full Text PDFRecent studies have shown that the protein interface sites between individual monomeric units in biological assemblies are enriched in disease-associated non-synonymous single nucleotide variants (nsSNVs). To elucidate the mechanistic underpinning of this observation, we investigated the conformational dynamic properties of protein interface sites through a site-specific structural dynamic flexibility metric (dfi) for 333 multimeric protein assemblies. dfi measures the dynamic resilience of a single residue to perturbations that occurred in the rest of the protein structure and identifies sites contributing the most to functionally critical dynamics.
View Article and Find Full Text PDFMolecular docking serves as an important tool in modeling protein-ligand interactions. However, it is still challenging to incorporate overall receptor flexibility, especially backbone flexibility, in docking due to the large conformational space that needs to be sampled. To overcome this problem, we developed a novel flexible docking approach, BP-Dock (Backbone Perturbation-Dock) that can integrate both backbone and side chain conformational changes induced by ligand binding through a multi-scale approach.
View Article and Find Full Text PDFProtein evolution is most commonly studied by analyzing related protein sequences and generating ancestral sequences through Bayesian and Maximum Likelihood methods, and/or by resurrecting ancestral proteins in the lab and performing ligand binding studies to determine function. Structural and dynamic evolution have largely been left out of molecular evolution studies. Here we incorporate both structure and dynamics to elucidate the molecular principles behind the divergence in the evolutionary path of the steroid receptor proteins.
View Article and Find Full Text PDFProtein interacting with C kinase (PICK1) is well conserved throughout evolution and plays a critical role in synaptic plasticity by regulating the trafficking and posttranslational modification of its interacting proteins. PICK1 contains a single PSD95/DlgA/Zo-1 (PDZ) protein-protein interaction domain, which is promiscuous and shown to interact with over 60 proteins, most of which play roles in neuronal function. Several reports have suggested the role of PICK1 in disorders such as epilepsy, pain, brain trauma and stroke, drug abuse and dependence, schizophrenia and psychosis.
View Article and Find Full Text PDFThe allosteric mechanism plays a key role in cellular functions of several PDZ domain proteins (PDZs) and is directly linked to pharmaceutical applications; however, it is a challenge to elaborate the nature and extent of these allosteric interactions. One solution to this problem is to explore the dynamics of PDZs, which may provide insights about how intramolecular communication occurs within a single domain. Here, we develop an advancement of perturbation response scanning (PRS) that couples elastic network models with linear response theory (LRT) to predict key residues in allosteric transitions of the two most studied PDZs (PSD-95 PDZ3 domain and hPTP1E PDZ2 domain).
View Article and Find Full Text PDFUsing the perturbation-response scanning (PRS) technique, we study a set of 25 proteins that display a variety of conformational motions upon ligand binding (e.g., shear, hinge, allosteric).
View Article and Find Full Text PDFInt J Cardiovasc Imaging
January 2011
After regular and prolonged training, some physical and structural changes occur in the heart. Strain (S) imaging and Strain Rate (SR) imaging are new and effective techniques derived from tissue Doppler imaging (TDI) which examine systolic and diastolic functions. The aim of the present study was to evaluate left ventricular TDI and S/SR imaging properties in athletes and sedentary controls.
View Article and Find Full Text PDFModeling of protein binding site flexibility in molecular docking is still a challenging problem due to the large conformational space that needs sampling. Here, we propose a flexible receptor docking scheme: A dihedral restrained replica exchange molecular dynamics (REMD), where we incorporate the normal modes obtained by the Elastic Network Model (ENM) as dihedral restraints to speed up the search towards correct binding site conformations. To our knowledge, this is the first approach that uses ENM modes to bias REMD simulations towards binding induced fluctuations in docking studies.
View Article and Find Full Text PDFPDZ domains (PDZs), the most common interaction domain proteins, play critical roles in many cellular processes. PDZs perform their job by binding specific protein partners. However, they are very promiscuous, binding to more than one protein, yet selective at the same time.
View Article and Find Full Text PDF