Previous studies have found that peripheral vestibular dysfunction is associated with altered volumes in different brain structures, especially in the hippocampus. However, published evidence is conflicting. Based on previous findings, we compared hippocampal volume, as well as supramarginal, superior temporal, and postcentral gyrus in a sample of 55 patients with different conditions of peripheral vestibular dysfunction (bilateral, chronic unilateral, acute unilateral) to 39 age- and sex-matched healthy controls.
View Article and Find Full Text PDFVestibular perceptual thresholds refer to the motion intensity required to enable a participant to detect or discriminate a motion based on vestibular input. Using passive motion profiles provided by six degree-of-motion platforms, vestibular perceptual thresholds can be estimated for any kind of motion and thereby target each of the sub-components of the vestibular end-organ. Assessments of vestibular thresholds are clinically relevant as they complement diagnostic tools such as caloric irrigation, the head impulse test (HIT), or vestibular evoked myogenic potentials (VEMPs), which only provide information on sub-components of the vestibular system, but none of them allow for assessing all components.
View Article and Find Full Text PDFThere is growing evidence that vestibular information is not only involved in reflexive eye movements and the control of posture but it also plays an important role in higher order cognitive processes. Previous behavioral research has shown that concomitant vestibular stimuli influence performance in tasks that involve imagined self-rotations. These results suggest that imagined and perceived body rotations share common mechanisms.
View Article and Find Full Text PDF