Publications by authors named "Gerd Vorbruggen"

The zebrafish germline is specified during early embryogenesis by inherited maternal RNAs and proteins collectively called germ plasm. Only the cells containing germ plasm will become part of the germline, whereas the other cells will commit to somatic cell fates. Therefore, proper localization of germ plasm is key for germ cell specification and its removal is crucial for the development of the soma.

View Article and Find Full Text PDF

Accumulation of oxidized amino acids, including methionine, has been implicated in aging. The ability to reduce one of the products of methionine oxidation, free methionine-R-sulfoxide (Met-R-SO), is widespread in microorganisms, but during evolution this function, conferred by the enzyme fRMsr, was lost in metazoa. We examined whether restoration of the fRMsr function in an animal can alleviate the consequences of methionine oxidation.

View Article and Find Full Text PDF

Despite remarkable developments in diffraction unlimited super-resolution microscopy, in vivo nanoscopy of tissues and model organisms is still not satisfactorily established and rarely realized. RESOLFT nanoscopy is particularly suited for live cell imaging because it requires relatively low light levels to overcome the diffraction barrier. Previously, we introduced the reversibly switchable fluorescent protein rsEGFP2, which facilitated fast RESOLFT nanoscopy (Grotjohann et al.

View Article and Find Full Text PDF

Small GTPases of the Rab family not only regulate target recognition in membrane traffic but also control other cellular functions such as cytoskeletal transport and autophagy. Here we show that Rab26 is specifically associated with clusters of synaptic vesicles in neurites. Overexpression of active but not of GDP-preferring Rab26 enhances vesicle clustering, which is particularly conspicuous for the EGFP-tagged variant, resulting in a massive accumulation of synaptic vesicles in neuronal somata without altering the distribution of other organelles.

View Article and Find Full Text PDF

Selenoproteins are essential in vertebrates because of their crucial role in cellular redox homeostasis, but some invertebrates that lack selenoproteins have recently been identified. Genetic disruption of selenoprotein biosynthesis had no effect on lifespan and oxidative stress resistance of Drosophila melanogaster. In the current study, fruit flies with knock-out of the selenocysteine-specific elongation factor were metabolically labeled with (75)Se; they did not incorporate selenium into proteins and had the same lifespan on a chemically defined diet with or without selenium supplementation.

View Article and Find Full Text PDF

Syndecan (Sdc) is a conserved transmembrane heparan sulfate proteoglycan (HSPG) bearing additional chondroitin sulfate (CS) modifications on its extracellular domain. In vertebrates, this extracellular domain of Sdc is shed and acts as a soluble effector of cellular communication events, and its cytoplasmic domain participates in intracellular signaling needed to maintain epithelial integrity. In Drosophila, Sdc has been shown to be necessary for Slit signaling-dependent axon and myotube guidance during CNS development and muscle pattern formation.

View Article and Find Full Text PDF

Methionine sulfoxide reductases (Msrs) are enzymes that repair oxidized methionine residues in proteins. This function implicated Msrs in antioxidant defense and the regulation of aging. There are two known Msr types in animals: MsrA specific for the reduction of methionine-S-sulfoxide, and MsrB that catalyzes the reduction of methionine-R-sulfoxide.

View Article and Find Full Text PDF

Translational read-through of the UGA stop codon is an evolutionarily conserved feature that most prominently represents the basis of selenoprotein biosynthesis. It requires a specific cis-acting stem loop control element, termed SECIS, which is located in the 3'-untranslated region of eukaryotic selenoprotein mRNAs. In a search for novel factors underlying the SECIS-directed UGA read-through process, we identified an evolutionary conserved GTPase-activating protein, termed GAPsec.

View Article and Find Full Text PDF

During Drosophila embryogenesis, the attachment of somatic muscles to epidermal tendon cells requires heterodimeric PS-integrin proteins (alpha- and beta-subunits). The alpha-subunits are expressed complementarily, either tendon cell- or muscle-specific, whereas the beta-integrin subunit is expressed in both tissues. Mutations of beta-integrin cause a severe muscle detachment phenotype, whereas alpha-subunit mutations have weaker or only larval muscle detachment phenotypes.

View Article and Find Full Text PDF

We describe the molecular characterization and function of vielfältig (vfl), a X-chromosomal gene that encodes a nuclear protein with six Krüppel-like C2H2 zinc finger motifs. vfl transcripts are maternally contributed and ubiquitously distributed in eggs and preblastoderm embryos, excluding the germline precursor cells. Zygotically, vfl is expressed strongly in the developing nervous system, the brain, and in other mitotically active tissues.

View Article and Find Full Text PDF

This article reports the production of an EP-element insertion library with more than 3,700 unique target sites within the Drosophila melanogaster genome and its use to systematically identify genes that affect embryonic muscle pattern formation. We designed a UAS/GAL4 system to drive GAL4-responsive expression of the EP-targeted genes in developing apodeme cells to which migrating myotubes finally attach and in an intrasegmental pattern of cells that serve myotubes as a migration substrate on their way towards the apodemes. The results suggest that misexpression of more than 1.

View Article and Find Full Text PDF

Slit, the ligand for the Roundabout (Robo) receptors, is secreted from midline cells of the Drosophila central nervous system (CNS). It acts as a short-range repellent that controls midline crossing of axons and allows growth cones to select specific pathways along each side of the midline. In addition, Slit directs the migration of muscle precursors and ventral branches of the tracheal system, showing that it provides long-range activity beyond the limit of the developing CNS.

View Article and Find Full Text PDF

During Drosophila embryogenesis, developing muscles extend growth-cone-like structures to navigate toward specific epidermal attachment sites. Here, we show that the homolog of Glutamate Receptor-Interacting Proteins (DGrip) acts as a key component of proper muscle guidance. Mutations in dgrip impair patterning of ventral longitudinal muscles (VLMs), whereas lateral transverse muscles (LTMs) that attach to intrasegmental attachment sites develop normally.

View Article and Find Full Text PDF