Publications by authors named "Gerd Hublik"

Xanthan gum is a polysaccharide that is widely used as a thickening agent in numerous food, cosmetic, and technical applications. Therefore, the knowledge of the molecular interplay that builds up and stabilizes water-binding networks is crucial for the optimization of xanthan thickening performance. Using atomic force microscopy, rheometry, and inductively coupled plasma optical emission spectroscopy, we show a clear correlation between xanthan thickening properties and the ability to form characteristic secondary structures as well as the valence and amount of cations coordinated at the polysaccharide side chain.

View Article and Find Full Text PDF

Xanthomonas campestris strains are used world-wide for the production of the industrially important exopolysaccharide xanthan. The high industrial relevance of xanthan can be explained by its extraordinary qualities as rheological control agent in aqueous systems and by its stabilizing properties in suspensions and emulsions. The phytopathogen Xanthomonas campestris is a motile bacterium with one polar flagellum.

View Article and Find Full Text PDF

The ɣ-proteobacterium Xanthomonas campestris pv. campestris (Xcc) is the producer of the biopolymer xanthan, a polysaccharide which is used as a thickener in numerous industrial applications. In this study, we present a global transcriptome profiling of two Xcc strain B100 cultures obtained from fermentation during the growth phase and the subsequent stationary phase associated with xanthan biosynthesis.

View Article and Find Full Text PDF

Bioinformatics tools and gene expression data were applied to identify new genes and to enhance the accuracy in genomic feature predictions for Xanthomonas campestris pv. campestris (Xcc) B100, a pathogen of cruciferous plants and model strain for the biosynthesis of xanthan, a polysaccharide with a multitude of commercial applications as a thickening agent. Results from 5'-enriched end RNA sequencing (RNA-seq) and total transcriptome RNA-seq experiments were used for this purpose.

View Article and Find Full Text PDF

Background: The exopolysaccharide xanthan is a natural product which is extensively used in industry. It is a thickening agent in many fields, from oil recovery to the food sector. Xanthan is produced by the Gram negative bacterium Xanthomonas campestris pv.

View Article and Find Full Text PDF

Xanthomonas campestris pv. campestris (Xcc) is the major producer of the exopolysaccharide xanthan, the commercially most important natural polysaccharide of microbial origin. The current work provides deeper insights into the yet uncharacterized transcriptomic features of the xanthan producing strain Xcc-B100.

View Article and Find Full Text PDF

Xanthomonas campestris NRRL B-1459 was used in pioneering studies related to the biotechnological production of xanthan, the commercially most important polysaccharide of bacterial origin. The analysis of its genome revealed a 5.1Mb chromosome plus the first complete plasmid of an X.

View Article and Find Full Text PDF

The γ-proteobacterium Xanthomonas campestris pv. campestris (Xcc) B100 synthesizes the polysaccharide xanthan, a commercially important viscosifier. Since the complete genome of Xcc B100 is available, systems biology tools were applied to obtain a deeper understanding of the metabolism involved in xanthan biosynthesis.

View Article and Find Full Text PDF