Publications by authors named "Gerd G Kochendoerfer"

Background: Patients with Gorlin (basal cell nevus) syndrome (GS) have numerous phenotypic abnormalities due to over-activity of the hedgehog (HH) signaling pathway, most commonly due to a heritable mutation in the PTCH1 gene, which encodes a major inhibitor of this pathway. HH inhibitors (HHi) taken orally can reverse some of the manifestations, most prominent of which is the development of numerous cutaneous basal cell carcinomas (BCCs). In order to improve the benefit:risk ratio, we have developed a gel containing a small cyclopamine-derived molecule that can be applied topically in expectation that this mode of delivery can reduce the burden of BCCs without producing the systemic adverse effects that cause patients to stop treatment with oral HHis.

View Article and Find Full Text PDF

This phase 2a trial investigated the efficacy of NFX-179 Topical Gel, a metabolically labile MEK inhibitor, in the treatment of cutaneous neurofibromas (cNFs) in neurofibromatosis type 1. Forty-eight participants were randomized to four treatment arms: NFX-179 Topical Gel 0.05%, 0.

View Article and Find Full Text PDF

Cutaneous squamous cell carcinoma (cSCC) is the second most common skin cancer. Although cSCC contributes to substantial morbidity and mortality in high-risk individuals, deployment of otherwise effective chemoprevention of cSCC is limited by toxicities. Our systematic computational drug repurposing screen predicted that selumetinib, a MAPK (mitogen-activated protein kinase) kinase inhibitor (MEKi), would reverse transcriptional signatures associated with cSCC development, consistent with our genomic analysis implicating MEK as a chemoprevention target.

View Article and Find Full Text PDF

Chemical protein synthesis is important for dissecting the molecular basis of protein function. Here we advance its scope by demonstrating the significant improvement of the multifaceted pharmaceutical profile of small proteins exclusively via a chemical-based approach. The focus of this work centered on CCL-5 (RANTES) derivatives with potent anti-HIV activity.

View Article and Find Full Text PDF

Chemoselective ligation strategies have previously provided synthetic access to water-soluble proteins with novel properties, and more recently these strategies have been used to prepare ion channels. Examples of ion channels prepared by total chemical synthesis include bacterial mechanosensitive channels, and viral ion channels. Chemical protein synthesis allows for the generation of ion channel proteins with both native, and engineered structural or conductance properties.

View Article and Find Full Text PDF

Recent advances in chemoselective ligation technology have made possible the modification of proteins with polymers in a site-specific and controlled manner. These approaches rely on the incorporation of chemoselective anchors into the protein backbone by either chemical or recombinant means, and subsequent modification with a polymer carrying a complementary linker. As a result, the assembly process and the covalent structure of the resulting protein-polymer conjugate are completely controlled, enabling the rational optimization of drug properties, in particular efficacy and pharmacokinetic properties.

View Article and Find Full Text PDF

Chemical synthesis in combination with precision polymer modification allows the systematic exploration of the effect of protein properties, such as charge and hydrodynamic radius, on potency using defined, homogeneous conjugates. A series of polymer-modified synthetic erythropoiesis proteins were constructed that had a polypeptide chain similar to the amino acid sequence of human erythropoietin but differed significantly in the number and type of attached polymers. The analogs differed in charge from +5 to -26 at neutral pH and varied in molecular weight from 30 to 54 kDa.

View Article and Find Full Text PDF

A synthetic strategy that allows for the site-specific attachment of polymers such as poly(ethylene glycol) (PEG) to protein pharmaceuticals is described. PEG was attached to a 67-amino acid fully synthetic CCL-5 (RANTES) analogue at its GAG binding site both to reduce aggregation and to increase the circulating lifetime. Effective protection of an Aoaa chemoselective linker during peptide assembly, total chemical protein synthesis, and protein folding was achieved with an isopropylidene group.

View Article and Find Full Text PDF

Covalent modification of integral membrane proteins with amphiphiles may provide a general approach to the conversion of membrane proteins into water-soluble forms for biophysical and high-resolution structural studies. To test this approach, we mutated four surface residues of the pentameric Mycobacterium tuberculosis mechanosensitive channel of large conductance (MscL) to cysteine residues as anchors for amphiphile attachment. A series of modified ion channels with four amphiphile groups attached per channel subunit was prepared.

View Article and Find Full Text PDF

A synthesis strategy for the on-resin assembly of luminescent lanthanide chelates from commercially available compounds was developed. Advantages of the approach include the absence of spacers between the metal ion and the attachment site, and the compatibility with typical chemical protein synthesis protection schemes. Methoxycoumarin-labeled lysine and tris(tert-butyl)-DOTA were consecutively coupled with high efficiency to a free amino group in otherwise fully protected peptide segments using standard peptide synthesis methods.

View Article and Find Full Text PDF

The covalent modification of water-insoluble membrane polypeptides incorporated into lipid bilayers by native chemical ligation is described. The key feature of this strategy is the use of cubic lipidic phase (CLP) matrixes as reaction media. The CLP-matrix consists of a lipid bilayer into which hydrophobic polypeptides and folded membrane proteins can be inserted and two unbounded aqueous channels that give the aqueous phase access to both sides of an infinite lipid bilayer and thus ensure that modification of solvent-exposed sites is independent of the topology of membrane incorporation.

View Article and Find Full Text PDF

Total chemical protein synthesis was used to generate multimilligram quantities of the mechanosensitive channel of large conductance from Escherichia coli (Ec-MscL) and Mycobacterium tuberculosis (Tb-MscL). Cysteine residues introduced to allow chemical ligation were masked with cysteine-reactive molecules, resulting in side chain functional groups similar to those of the wild-type protein. Synthetic channel proteins were transferred to 2,2,2-trifluoroethanol and reconstituted into vesicle membranes.

View Article and Find Full Text PDF

Vpu is an 81-residue integral membrane protein encoded in the HIV-1 genome that is of considerable interest because it plays important roles in the release of virus particles from infected cells and in the degradation of the cellular receptor. We report here the total chemical synthesis of full-length Vpu(1-81) as well as a site-specifically (15)N-labeled analogue, Vpu(2-81), using native chemical ligation methodologies and also report a structural and functional comparison of these constructs with recombinant protein obtained via bacterial expression. The structures of the synthetic and expressed polypeptides were similar in lipid micelles using solution NMR spectroscopy.

View Article and Find Full Text PDF

Vpu, an 81-residue membrane protein encoded by the genome of HIV-1, is involved in CD4 degradation and facilitates virion budding from infected cells. The latter activity requires an intact transmembrane (TM) domain; however, the mechanism remains unclear. Vpu forms ion channels, an activity linked to the TM domain and envisioned to arise by oligomerization.

View Article and Find Full Text PDF

We report the design and total chemical synthesis of "synthetic erythropoiesis protein" (SEP), a 51-kilodalton protein-polymer construct consisting of a 166-amino-acid polypeptide chain and two covalently attached, branched, and monodisperse polymer moieties that are negatively charged. The ability to control the chemistry allowed us to synthesize a macromolecule of precisely defined covalent structure. SEP was homogeneous as shown by high-resolution analytical techniques, with a mass of 50,825 +/-10 daltons by electrospray mass spectrometry, and with a pI of 5.

View Article and Find Full Text PDF

A 27-kDa TASP protein, T(5)Msc(103-151), that was derived from the cytoplasmic domain (amino acid residues 103-151) of the MscL ion channel of M. tuberculosis was synthesized by ketoxime-forming chemoselective ligation between a template molecule carrying five pyruvic acid groups, and linear channel peptides carrying one aminooxyacetic acid group. Ketoxime-forming ligation provided for highly efficient assembly of this large totally synthetic protein construct with yields >90% with modest excess (1.

View Article and Find Full Text PDF