Publications by authors named "Gerardo Gamez"

Background: Elemental mapping (EM) yields necessary insights into mechanisms of interest in solid samples across multiple disciplines. There are several EM techniques available but long acquisition time is a common limitation. Glow discharge optical emission spectroscopy (GDOES) allows direct quantitative multi-EM at very high throughput (∼10 s s) when coupled to traditional hyperspectral imaging (HSI) techniques.

View Article and Find Full Text PDF

The almost-two-centuries history of spectrochemical analysis has generated a body of literature so vast that it has become nearly intractable for experts, much less for those wishing to enter the field. Authoritative, focused reviews help to address this problem but become so granular that the overall directions of the field are lost. This broader perspective can be provided partially by general overviews but then the thinking, experimental details, theoretical underpinnings and instrumental innovations of the original work must be sacrificed.

View Article and Find Full Text PDF

Herein, a diode laser-assisted micro-pyrolysis (LAMP) technique coupled with FAPA high resolution mass spectrometry (HRMS) is demonstrated for fast chemical characterization of lignocellulosic biomass feedstocks. The solid lignocellulosic biomass can be analyzed directly with minimal sample preparation. The mass spectra of the pyrolysis products are interpreted with the aid of data visualization tools such as Kendrick mass defect (KMD) plots and van Krevelen plots.

View Article and Find Full Text PDF

Nanoparticle (NP) characterization is critical in many fields due to the use of NPs in numerous applications. Traditional NP characterization techniques, however, are limited by low sample throughput, and few can measure the size and elemental composition. Furthermore, sample throughput limitations are compounded in elemental mapping (EM) techniques for obtaining NP spatial distribution.

View Article and Find Full Text PDF

Breath analysis has attracted increasing attention in recent years due to its great potential for disease diagnostics at early stages and for clinical drug monitoring. There are several recent examples of successful development of real-time, in vivo quantitative analysis of exhaled breath metabolites via mass spectrometry. On the other hand, current mass spectrometer accessibility limitations restrict point-of-care applications.

View Article and Find Full Text PDF

In this work, a field-switching (FS) technique is employed with a flowing atmospheric pressure afterglow (FAPA) source in drift tube ion mobility spectrometry (DTIMS). The premise is to incorporate a tip-repeller electrode as a substitute for the Bradbury-Nielsen gate (BNG) so as to overcome corresponding disadvantages of the BNG, including the gate depletion effect (GDE). The DTIMS spectra were optimized in terms of peak shape and full width by inserting an aperture at the DTIMS inlet that was used to control the neutral molecules' penetration into the separation region, thus preventing neutral-ion reactions inside.

View Article and Find Full Text PDF

Herein, a novel diode laser-assisted micro-pyrolysis program (LAMP) technique is demonstrated and coupled with flowing atmospheric-pressure afterglow ambient mass spectrometry for instantaneously profiling polymers and polymer additives. Laser power modulation allows thermal separation of additives and different pyrolysis products, as shown through positive- and negative-mode high-resolution mass spectra and Kendrick mass defect plots of homopolymers, copolymers, polymer blends, and complex polymer samples. LAMP allows much faster temperature control through real-time duty cycle changes and gives significantly better spatial confinement compared to typical resistive heating pyrolysis approaches.

View Article and Find Full Text PDF

Ambient mass spectrometry (AMS) allows direct desorption and ionization of analytes in real time with minimal-to-no sample preparation. However, it may present inadequate capabilities for differentiating isomers. Here, a reactive flowing atmospheric-pressure afterglow (reactive-FAPA) AMS source is developed for rapid isomer differentiation by derivatization of analytes in real time.

View Article and Find Full Text PDF

In this work, the flowing atmospheric-pressure afterglow (FAPA) ambient desorption/ionization source has been coupled with stand-alone Drift Tube Ion Mobility Spectrometry (DTIMS) for the first time. A tip repeller electrode, modified to allow higher bias potential still below the Townsend's breakdown, was implemented at the FAPA/DTIMS interface to overcome the opposing potentials and facilitate ion transmission. The effect of the lab-built DTIMS and FAPA's operating conditions (such as plasma voltage, current, gas flow rate, repeller's potential and positioning, FAPA orientation, etc.

View Article and Find Full Text PDF

Flowing atmospheric pressure afterglow (FAPA) mass spectrometry (MS) is an easy-to-use, cost-effective, and potentially portable technique that allows direct desorption/ionization from samples with little-to-no sample preparation for real-time chemical analysis. However, it has limitations regarding analytes with low desorption efficiency, such as polymers. Here, laser assisted sampling (LAS) is developed and coupled to FAPA MS to allow access to a wider range of chemical information from polymer samples.

View Article and Find Full Text PDF

Thin-layer chromatography (TLC) is a widespread technique because it allows fast, simple, and inexpensive analyte separations. In addition, direct analysis of the compounds separated on TLC plates via mass spectrometry (MS) has been shown to provide high sensitivity and selectivity while avoiding time-consuming sample extraction protocols. Here, direct desorption low-temperature plasma-mass spectrometry (LTP-MS) as well as diode laser assisted desorption (LD) LTP-MS are studied for direct spatially resolved analysis of compounds from TLC plates.

View Article and Find Full Text PDF

Real-time analysis of exhaled human breath is a rapidly growing field in analytical science and has great potential for rapid and noninvasive clinical diagnosis and drug monitoring. In the present study, an LTP-MS method was developed for real-time, in-vivo and quantitative analysis of γ-valprolactone, a metabolite of valproic acid (VPA), in exhaled breath without any sample pretreatment. In particular, the effect of working conditions and geometry of the LTP source on the ions of interest, protonated molecular ion at m/z 143 and ammonium adduct ion at m/z 160, were systematically characterized.

View Article and Find Full Text PDF

Combinatorial chemistry and high-throughput techniques are an efficient way of exploring optimal values of elemental composition. Optimal composition can result in high performance in a sequence of material synthesis and characterization. Materials combinatorial libraries are typically encountered in the form of a thin film composition gradient which is produced by simultaneous material deposition on a substrate from two or more sources that are spatially separated and chemically different.

View Article and Find Full Text PDF

Extractive electrospray ionization mass spectrometry is shown to allow real-time, in vivo drug monitoring and pharmacokinetic measurement in a non-invasive, pain-free manner as demonstrated by the mass spectral measurement of a novel exhaled breath biomarker for valproic acid, a medication used to control epilepsy.

View Article and Find Full Text PDF

By gently bubbling nitrogen gas through beer, an effervescent beverage, both volatile and non-volatile compounds can be simultaneously sampled in the form of aerosol. This allows for fast (within seconds) fingerprinting by extractive electrospray ionization mass spectrometry (EESI-MS) in both negative and positive ion mode, without the need for any sample pre-treatment such as degassing and dilution. Trace analytes such as volatile esters (e.

View Article and Find Full Text PDF

Flowing afterglow atmospheric pressure glow discharge mass spectrometry (FA-APGD-MS) was used to interrogate different polymer species such as biopolymers, synthetic homo- and co-polymers. The main advantages of FA-APGD-MS for polymer samples include speed (<30 s per sample) and analysis at atmospheric pressures. Moreover, there are essentially no restrictions as to the kind of polymer sample that can be analyzed because FA-APGD-MS can deal with liquid and solid (soluble or insoluble) bulk polymers and granulates, irrespective of their conductivity, without requiring any sample preparation prior to analysis.

View Article and Find Full Text PDF

Ambient mass spectrometry-mass spectrometric analysis with no or minimal effort for sample preparation-has experienced a very rapid development during the last 5 years, with many different methods now available for ionization. Here, we review its range of applications, the hurdles encountered for its quantitative use, and the proposed mechanisms for ion formation. Clearly, more effort needs to be put into investigation of matrix effects, into defining representative sampling of heterogeneous materials, and into understanding and controlling the underlying ionization mechanisms.

View Article and Find Full Text PDF

Near-field laser ablation (NF-LA) coupled with mass spectrometry (MS) is very promising for highly spatially resolved chemical analyses on various substrates at atmospheric pressure, for example, in materials and life science applications. Although nanoscale sample craters can be produced routinely, no molecular mass spectra of ablated material from craters of View Article and Find Full Text PDF

Fluorescence spectroscopy and mass spectrometry have been extensively used for characterization of biomaterials, but usually separately. An instrument combining fluorescence spectroscopy and Fourier-transform ion cyclotron resonance mass spectrometry (FTICR-MS) has been developed to explore both fluorescence and mass spectrometric behavior of ions produced by electrospray ionization (ESI) in ultra high vacuum (<5 x 10(-9) mbar). Using rhodamine 6G (R6G) as a sample, the instrument was systematically characterized.

View Article and Find Full Text PDF

A novel method based on ultrasound-assisted EESI-MS has been developed and applied to rapidly detect the presence of melamine in raw milk, wheat gluten and milk powder with no or minor sample pre-treatment; the high sample throughput and figures of merit make it specially useful for screening melamine levels well below the current safety limit in various food matrices.

View Article and Find Full Text PDF

Recent findings suggest that long-term exposure to diethyl phthalate (DEP), one of the widely used phthalate esters, can lead to serious health problems. Most perfumes contain non-negligible amounts of DEP. Rapid and sensitive detection of DEP in perfumes is thus of increasing importance.

View Article and Find Full Text PDF

Extractive electrospray ionization mass spectrometry (EESI-MS) for real-time monitoring of organic chemical reactions was demonstrated for a well-established pharmaceutical process reaction and a widely used acetylation reaction in the presence of a nucleophilic catalyst, 4-dimethylaminopyridine (4-DMAP). EESI-MS provides real-time information that allows us to determine the optimum time for terminating the reaction based on the relative intensities of the precursors and products. In addition, tandem mass spectrometric (MS/MS) analysis via EESI-MS permits on-line validation of proposed reaction intermediates.

View Article and Find Full Text PDF

Flowing afterglow atmospheric pressure glow discharge tandem mass spectrometry (APGD-MS/MS) is used for the analysis of trace amounts of pesticides in fruit juices and on fruit peel. The APGD source was rebuilt after Andrade et al. (Andrade et al.

View Article and Find Full Text PDF

Electron impact ionization has several known advantages; however, heated filament electron sources have pressure limitations and their power consumption can be significant for certain applications, such as in field-portable instruments. Herein, we evaluate a VUV krypton lamp as an alternative source for ionization inside the ion trap of a mass spectrometer. The observed fragmentation patterns are more characteristic of electron impact ionization than photoionization.

View Article and Find Full Text PDF