Publications by authors named "Gerardo G Naumis"

The existence of superconductivity (SC) appears to be established in both twisted and nontwisted graphene multilayers. However, whether their building block, single-layer graphene (SLG), can also host SC remains an open question. Earlier theoretical works predicted that SLG could become a chiral -wave superconductor driven by electronic interactions when doped to its van Hove singularity, but questions such as whether the -wave SC survives the strong band renormalizations seen in experiments, its robustness against the source of doping, or if it will occur at any reasonable critical temperature () have remained difficult to answer, in part due to uncertainties in model parameters.

View Article and Find Full Text PDF

(HG) is a widely used graphene material for the synthesis of high-purity and highly crystalline materials. The electronic properties of a periodic distribution of lattice holes are explored here, demonstrating the emergence of flat bands. It is established that such flat bands arise as a consequence of an induced sublattice site imbalance, i.

View Article and Find Full Text PDF

Although friendship networks have been extensively studied, few models and studies are available to understand the reciprocity of friendship and foes. Here a model is presented to explain the directed friendship and foes network formation observed in experiments of Mexican and Hungarian schools. Within the presented model, each agent has a private opinion and a public one that shares to the group.

View Article and Find Full Text PDF

This is an update of a previous review (Naumis2017096501). Experimental and theoretical advances for straining graphene and other metallic, insulating, ferroelectric, ferroelastic, ferromagnetic and multiferroic 2D materials were considered. We surveyed (i) methods to induce valley and sublattice polarisation () in graphene, (ii) time-dependent strain and its impact on graphene's electronic properties, (iii) the role of local and global strain on superconductivity and other highly correlated and/or topological phases of graphene, (iv) inducing polarisationon hexagonal boron nitride monolayers via strain, (v) modifying the optoelectronic properties of transition metal dichalcogenide monolayers through strain, (vi) ferroic 2D materials with intrinsic elastic (), electric () and magnetic () polarisation under strain, as well as incipient 2D multiferroics and (vii) moiré bilayers exhibiting flat electronic bands and exotic quantum phase diagrams, and other bilayer or few-layer systems exhibiting ferroic orders tunable by rotations and shear strain.

View Article and Find Full Text PDF

The topological properties of the flat band states of a one-electron Hamiltonian that describes a chain of atoms with - orbitals are explored. This model is mapped onto a Kitaev-Creutz type model, providing a useful framework to understand the topology through a nontrivial winding number and the geometry introduced by themetric. This metric allows us to distinguish between pure states of systems with the same topology and thus provides a suitable tool for obtaining the fingerprint of flat bands.

View Article and Find Full Text PDF

A two-dimensional topological crystalline insulator (TCI) with a single unit cell (u.c.) thickness is demonstrated here.

View Article and Find Full Text PDF

Networks with as many mechanical constraints as degrees of freedom and no redundant constraints are minimally rigid or isostatic. Isostatic networks are relevant in the study of network glasses, soft matter, and sphere packings. Because of being at the verge of mechanical collapse, they have anomalous elastic and dynamical properties not found in the more commonly occurring hyperstatic networks.

View Article and Find Full Text PDF

The time-dependent Ginzburg-Landau (or Allen-Cahn) equation and the Swift-Hohenberg equation, both added with a stochastic term, are proposed to describe cloud pattern formation and cloud regime phase transitions of shallow convective clouds organized in mesoscale systems. The starting point is the Hottovy-Stechmann linear spatiotemporal stochastic model for tropical precipitation, used to describe the dynamics of water vapor and tropical convection. By taking into account that shallow stratiform clouds are close to a self-organized criticality and that water vapor content is the order parameter, it is observed that sources must have nonlinear terms in the equation to include the dynamical feedback due to precipitation and evaporation.

View Article and Find Full Text PDF

The effects of second-neighbor interactions in Kekulé-Y patterned graphene electronic properties are studied starting from a tight-binding Hamiltonian. Thereafter, a low-energy effective Hamiltonian is obtained by projecting the high energy bands at the Γ point into the subspace defined by the Kekulé wave vector. The spectrum of the low energy Hamiltonian is in excellent agreement with the one obtained from a numerical diagonalization of the full tight-binding Hamiltonian.

View Article and Find Full Text PDF

Here we study the relaxation of a chain consisting of three masses joined by nonlinear springs and periodic conditions when the stiffness is weakened. This system, when expressed in their normal coordinates, yields a softened Henon-Heiles system. By reducing the stiffness of one low-frequency vibrational mode, a faster relaxation is enabled.

View Article and Find Full Text PDF

This review presents the state of the art in strain and ripple-induced effects on the electronic and optical properties of graphene. It starts by providing the crystallographic description of mechanical deformations, as well as the diffraction pattern for different kinds of representative deformation fields. Then, the focus turns to the unique elastic properties of graphene, and to how strain is produced.

View Article and Find Full Text PDF

We find exact states of graphene quasiparticles under a time-dependent deformation (sound wave), whose propagation velocity is smaller than the Fermi velocity. To solve the corresponding effective Dirac equation, we adapt the Volkov-like solutions for relativistic fermions in a medium under a plane electromagnetic wave. The corresponding electron-deformation quasiparticle spectrum is determined by the solutions of a Mathieu equation resulting in band tongues warped in the surface of the Dirac cones.

View Article and Find Full Text PDF

The density of states and the AC conductivity of graphene under uniform strain are calculated using a new Dirac Hamiltonian that takes into account the main three ingredients that change the electronic properties of strained graphene: the real displacement of the Fermi energy, the reciprocal lattice strain and the changes in the overlap of atomic orbitals. Our simple analytical expressions for the density of states and the AC conductivity generalize previous expressions for uniaxial strain. The results suggest a way to measure the Grüneisen parameter β that appears in any calculation of strained graphene, as well as the emergence of a sort of Hall effect due to shear strain.

View Article and Find Full Text PDF

When a liquid melt is cooled, a glass or phase transition can be obtained depending on the cooling rate. Yet, this behavior has not been clearly captured in energy-landscape models. Here, a model is provided in which two key ingredients are considered in the landscape, metastable states and their multiplicity.

View Article and Find Full Text PDF

In the energy landscape picture, the dynamics of glasses and crystals is usually decomposed into two separate contributions: interbasin and intrabasin dynamics. The intrabasin dynamics depends partially on the quadratic displacement distribution on a given metabasin. Here we show that such a distribution can be approximated by a Gamma function, with a mean that depends linearly on the temperature and on the inverse second moment of the density of vibrational states.

View Article and Find Full Text PDF

In order to elucidate the presence of non-localized states in doped graphene, a scaling analysis of the wavefunction moments, known as inverse participation ratios, is performed. The model used is a tight-binding Hamiltonian considering nearest and next-nearest neighbors with random substitutional impurities. Our findings indicate the presence of non-normalizable wavefunctions that follow a critical (power-law) decay, which show a behavior intermediate between those of metals and insulators.

View Article and Find Full Text PDF
Article Synopsis
  • The text discusses how localization increases near the Dirac point in doped graphene by mapping its honeycomb lattice into a triangular one and examining the effects of frustration.
  • It highlights that eigenstates in this new triangular lattice exhibit bonding and antibonding characteristics, leading to the formation of a Lifshitz tail.
  • Additionally, it explains that as disorder increases, fewer bonds become frustrated, which correlates with heightened localization in the system.
View Article and Find Full Text PDF

Using molecular dynamics at constant pressure, the relationship between the excess of low frequency vibrational modes (known as the boson peak) and the glass transition is investigated for a truncated Lennard-Jones potential. It is observed that the quadratic mean displacement is enhanced by such modes, as predicted using a harmonic Hamiltonian for metastable states. As a result, glasses loose mechanical stability at lower temperatures than the corresponding crystal, since the Lindemann criteria are observed, as is also deduced from density functional theory.

View Article and Find Full Text PDF

Glasses exist because they are not able to relax in a laboratory time scale toward the most stable structure: a crystal. At the same time, glasses present low-frequency vibrational-mode (LFVM) anomalies. We explore in a systematic way how the number of such modes influences thermal relaxation in one-dimensional models of glasses.

View Article and Find Full Text PDF

In this work, we introduce the idea of cage formation probability, defined by considering the angular space needed by a particle in order to leave a cage given an average distance to its neighbors. Considering extreme fluctuations, two phases appear as a function of the number of neighbors and their distances to a central one: Solid and fluid. This allows us to construct an approximated phase diagram based on a geometrical approach.

View Article and Find Full Text PDF

The eigenfunctions of nested wells with an incommensurate boundary geometry, in both the hydrodynamic shallow water regime and quantum cases, are systematically and exhaustively studied in this Letter. The boundary arrangement of the nested wells consists of polygonal ones, square or hexagonal, with a concentric immersed, similar but rotated, well or plateau. A rich taxonomy of wave patterns, such as quasicrystalline states, their crystalline rational approximants, and some other exotic but well known tilings, is found in these mimicked experiments.

View Article and Find Full Text PDF

A simple modification of the Monte Carlo algorithm is proposed to explore the topography and the scaling of the energy landscape. We apply this idea to a simple hard-core fluid. The results for different packing fractions show a power law scaling of the landscape boundary, with a characteristic scale that separates the values of the scaling exponents.

View Article and Find Full Text PDF
Energy landscape and rigidity.

Phys Rev E Stat Nonlin Soft Matter Phys

February 2005

The effects of floppy modes in the thermodynamical properties of a system are studied. From thermodynamical arguments, we deduce that floppy modes are not at zero frequency and thus a modified Debye model is used to take into account this effect. The model predicts a deviation from the Debye law at low temperatures.

View Article and Find Full Text PDF

Monte Carlo simulation techniques were employed to explore the effect of short-range attraction on the orientational ordering in a two-dimensional assembly of monodisperse spherical particles. We find that if the range of square-well attraction is approximately 15% of the particle diameter, the dense attractive fluid shows the same ordering behavior as the same density fluid composed of purely repulsive hard spheres. Fluids with an attraction range larger than 15% show an enhanced tendency to crystallization, while disorder occurs for fluids with an attractive range shorter than 15% of the particle diameter.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiono1pncmiokkh7f4qov9l39dtpbogifmj5): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once