Publications by authors named "Gerardo Ariel Mirkin"

Chagas disease, caused by , stands as the primary cause of dilated cardiomyopathy in the Americas. Macrophages play a crucial role in the heart's response to infection. Given their functional and phenotypic adaptability, manipulating specific macrophage subsets could be vital in aiding essential cardiovascular functions including tissue repair and defense against infection.

View Article and Find Full Text PDF

Chronic cardiomyopathy is one of the most relevant outcomes of Chagas disease associated with parasite persistence and exacerbated inflammatory response. Fenofibrate, a third generation fibric acid derivative and peroxisome proliferator-activated receptor-α ligand, is involved in the regulation of inflammatory response. However, the participation of macrophages in this scenario has not been elucidated.

View Article and Find Full Text PDF

Trypanosoma cruzi, the etiological agent of Chagas' disease, causes an intense inflammatory response in several tissues, including the liver. Since this organ is central to metabolism, its infection may be reflected in the outcome of the disease. 15-deoxy-Δ prostaglandin J (15dPGJ2), a natural agonist of peroxisome-proliferator activated receptor (PPAR) γ, has been shown to exert anti-inflammatory effects in the heart upon T.

View Article and Find Full Text PDF

Chagas disease, caused by Trypanosoma cruzi, is the main cause of dilated cardiomyopathy in the Americas. Antiparasitic treatment mostly relies on benznidazole (Bzl) due to Nifurtimox shortage or unavailability. Both induce adverse drug effects (ADE) of varied severity in many patients, leading to treatment discontinuation or abandonment.

View Article and Find Full Text PDF

The role of non-lymphoid tissue T cells expressing the BV9 family T-cell receptor (TCRBV9) was studied in mice chronically infected with the Trypanosoma cruzi. Heart and skeletal muscles had higher frequencies and ratios of CD8+ TCRBV9+ to CD4+ TCRBV9+ T cells than lymph nodes. Also, homing experiments of CFSE-labeled T cells showed preferential homing of TCRBV9+ T cells to heart tissue.

View Article and Find Full Text PDF