Current computers are limited by the von Neumann bottleneck, which constrains the throughput between the processing unit and the memory. Chemical processes have the potential to scale beyond current computing architectures as the processing unit and memory reside in the same space, performing computations through chemical reactions, yet their lack of programmability limits them. Herein, we present a programmable chemical processor comprising of a 5 by 5 array of cells filled with a switchable oscillating chemical (Belousov-Zhabotinsky) reaction.
View Article and Find Full Text PDFThe synthesis of complex organic compounds is largely a manual process that is often incompletely documented. To address these shortcomings, we developed an abstraction that maps commonly reported methodological instructions into discrete steps amenable to automation. These unit operations were implemented in a modular robotic platform by using a chemical programming language that formalizes and controls the assembly of the molecules.
View Article and Find Full Text PDFThe development of the internet of things has led to an explosion in the number of networked devices capable of control and computing. However, whilst common place in remote sensing, these approaches have not impacted chemistry due to difficulty in developing systems flexible enough for experimental data collection. Herein we present a simple and affordable (<$500) chemistry capable robot built with a standard set of hardware and software protocols that can be networked to coordinate many chemical experiments in real time.
View Article and Find Full Text PDFThe sorting of objects into groups is a fundamental operation, critical in the preparation and purification of populations of cells, crystals, beads, or droplets, necessary for research and applications in biology, chemistry, and materials science. Most of the efforts exploring such purification have focused on two areas: the degree of separation and the measurement precision required for effective separation. Conventionally, achieving good separation ultimately requires that the objects are considered one by one (which can be both slow and expensive), and the ability to measure the sorted objects by increasing sensitivity as well as reducing sorting errors.
View Article and Find Full Text PDF