Identifying what quantum-mechanical properties are useful to untap a superior performance in quantum technologies is a pivotal question. Quantum resource theories provide a unified framework to analyze and understand such properties, as successfully demonstrated for entanglement and coherence. While these are examples of convex resources, for which quantum advantages can always be identified, many physical resources are described by a nonconvex set of free states and their interpretation has so far remained elusive.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
September 2023
Identical quantum subsystems can possess a property which does not have any classical counterpart: indistinguishability. As a long-debated phenomenon, identical particles' indistinguishability has been shown to be at the heart of various fundamental physical results. When concerned with the spatial degree of freedom, identical constituents can be made indistinguishable by overlapping their spatial wave functions via appropriately defined .
View Article and Find Full Text PDFSignificanceQuantum coherence has a fundamentally different origin for nonidentical and identical particles since for the latter a unique contribution exists due to indistinguishability. Here we experimentally show how to exploit, in a controllable fashion, the contribution to quantum coherence stemming from spatial indistinguishability. Our experiment also directly proves, on the same footing, the different role of particle statistics (bosons or fermions) in supplying coherence-enabled advantage for quantum metrology.
View Article and Find Full Text PDFUnder the influence of external environments, quantum systems can undergo various different processes, including decoherence and equilibration. We observe that macroscopic objects are both objective and thermal, thus leading to the expectation that both objectivity and thermalisation can peacefully coexist on the quantum regime too. Crucially, however, objectivity relies on distributed classical information that could conflict with thermalisation.
View Article and Find Full Text PDFThe classical Gibbs paradox concerns the entropy change upon mixing two gases. Whether an observer assigns an entropy increase to the process depends on their ability to distinguish the gases. A resolution is that an "ignorant" observer, who cannot distinguish the gases, has no way of extracting work by mixing them.
View Article and Find Full Text PDFQuantum systems can be exploited for disruptive technologies but in practice quantum features are fragile due to noisy environments. Quantum coherence, a fundamental such feature, is a basis-dependent property that is known to exhibit a resilience to certain types of Markovian noise. Yet, it is still unclear whether this resilience can be relevant in practical tasks.
View Article and Find Full Text PDFThe reaction-coordinate mapping is a useful technique to study complex quantum dissipative dynamics into structured environments. In essence, it aims to mimic the original problem by means of an "augmented system," which includes a suitably chosen collective environmental coordinate-the "reaction coordinate." This composite then couples to a simpler "residual reservoir" with short-lived correlations.
View Article and Find Full Text PDFExtendibility of bosonic Gaussian states is a key issue in continuous-variable quantum information. We show that a bosonic Gaussian state is k-extendible if and only if it has a Gaussian k-extension, and we derive a simple semidefinite program, whose size scales linearly with the number of local modes, to efficiently decide k-extendibility of any given bosonic Gaussian state. When the system to be extended comprises one mode only, we provide a closed-form solution.
View Article and Find Full Text PDFWe compute analytically the maximal rates of distillation of quantum coherence under strictly incoherent operations (SIO) and physically incoherent operations (PIO), showing that they coincide for all states, and providing a complete description of the phenomenon of bound coherence. In particular, we establish a simple, analytically computable necessary and sufficient criterion for the asymptotic distillability under SIO and PIO. We use this result to show that almost every quantum state is undistillable-only pure states as well as states whose density matrix contains a rank-one submatrix allow for coherence distillation under SIO or PIO, while every other quantum state exhibits bound coherence.
View Article and Find Full Text PDFOne of the central problems in the study of quantum resource theories is to provide a given resource with an operational meaning, characterizing physical tasks in which the resource can give an explicit advantage over all resourceless states. We show that this can always be accomplished for all convex resource theories. We establish in particular that any resource state enables an advantage in a channel discrimination task, allowing for a strictly greater success probability than any state without the given resource.
View Article and Find Full Text PDFWe investigate the localization of two incoherent point sources with arbitrary angular and axial separations in the paraxial approximation. By using quantum metrology techniques, we show that a simultaneous estimation of the two separations is achievable by a single quantum measurement, with a precision saturating the ultimate limit stemming from the quantum Cramér-Rao bound. Such a precision is not degraded in the subwavelength regime, thus overcoming the traditional limitations of classical direct imaging derived from Rayleigh's criterion.
View Article and Find Full Text PDFWe consider a quantum communication task between two users Alice and Bob, in which Alice and Bob exchange their respective quantum information by means of local operations and classical communication assisted by shared entanglement. Here, we assume that Alice and Bob may have quantum side information, not transferred, and classical communication is free. In this work, we derive general upper and lower bounds for the least amount of entanglement which is necessary to perfectly perform this task, called the state exchange with quantum side information.
View Article and Find Full Text PDFWe study the process of assisted work distillation. This scenario arises when two parties share a bipartite quantum state ρ_{AB} and their task is to locally distill the optimal amount of work when one party is restricted to thermal operations, whereas the other can perform general quantum operations and they are allowed to communicate classically. We demonstrate that this question is intimately related to the distillation of classical and quantum correlations.
View Article and Find Full Text PDFQuantum Darwinism posits that information becomes objective whenever multiple observers indirectly probe a quantum system by each measuring a fraction of the environment. It was recently shown that objectivity of observables emerges generically from the mathematical structure of quantum mechanics, whenever the system of interest has finite dimensions and the number of environment fragments is large [F. G.
View Article and Find Full Text PDFThe ability to distill quantum coherence is pivotal for optimizing the performance of quantum technologies; however, such a task cannot always be accomplished with certainty. Here we develop a general framework of probabilistic distillation of quantum coherence in a one-shot setting, establishing fundamental limitations for different classes of free operations. We first provide a geometric interpretation for the maximal success probability, showing that under maximally incoherent operations (MIO) and dephasing-covariant incoherent operations (DIO) the problem can be simplified into efficiently computable semidefinite programs.
View Article and Find Full Text PDFWe characterize the distillation of quantum coherence in the one-shot setting, that is, the conversion of general quantum states into maximally coherent states under different classes of quantum operations. We show that the maximally incoherent operations (MIO) and the dephasing-covariant incoherent operations (DIO) have the same power in the task of one-shot coherence distillation. We establish that the one-shot distillable coherence under MIO and DIO is efficiently computable with a semidefinite program, which we show to correspond to a quantum hypothesis testing problem.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
July 2018
Given a certain amount of entanglement available as a resource, what is the most efficient way to accomplish a quantum task? We address this question in the relevant case of continuous variable quantum teleportation protocols implemented using two-mode Gaussian states with a limited degree of entanglement and energy. We first characterize the class of single-mode phase-insensitive Gaussian channels that can be simulated via a Braunstein-Kimble protocol with nonunit gain and minimum shared entanglement, showing that infinite energy is not necessary apart from the special case of the quantum limited attenuator. We also find that apart from the identity, all phase-insensitive Gaussian channels can be simulated through a two-mode squeezed state with finite energy, albeit with a larger entanglement.
View Article and Find Full Text PDFUnderstanding how quantum resources can be quantified and distributed over many parties has profound applications in quantum communication. As one of the most intriguing features of quantum mechanics, Einstein-Podolsky-Rosen (EPR) steering is a useful resource for secure quantum networks. By reconstructing the covariance matrix of a continuous variable four-mode square Gaussian cluster state subject to asymmetric loss, we quantify the amount of bipartite steering with a variable number of modes per party, and verify recently introduced monogamy relations for Gaussian steerability, which establish quantitative constraints on the security of information shared among different parties.
View Article and Find Full Text PDFWe investigate the dynamics of Gaussian states of continuous variable systems under Gaussianity-preserving channels. We introduce a hierarchy of such evolutions encompassing Markovian and weakly and strongly non-Markovian processes and provide simple criteria to distinguish between the classes, based on the degree of positivity of intermediate Gaussian maps. We present an intuitive classification of all one-mode Gaussian channels according to their non-Markovianity degree and show that weak non-Markovianity has an operational significance, as it leads to a temporary phase-insensitive amplification of Gaussian inputs beyond the fundamental quantum limit.
View Article and Find Full Text PDFWe derive fundamental constraints for the Schur complement of positive matrices, which provide an operator strengthening to recently established information inequalities for quantum covariance matrices, including strong subadditivity. This allows us to prove general results on the monogamy of entanglement and steering quantifiers in continuous variable systems with an arbitrary number of modes per party. A powerful hierarchical relation for correlation measures based on the log-determinant of covariance matrices is further established for all Gaussian states, which has no counterpart among quantities based on the conventional von Neumann entropy.
View Article and Find Full Text PDFThe ability to live in coherent superpositions is a signature trait of quantum systems and constitutes an irreplaceable resource for quantum-enhanced technologies. However, decoherence effects usually destroy quantum superpositions. It was recently predicted that, in a composite quantum system exposed to dephasing noise, quantum coherence in a transversal reference basis can stay protected for an indefinite time.
View Article and Find Full Text PDF"Is entanglement monogamous?" asks the title of a popular article [B. Terhal, IBM J. Res.
View Article and Find Full Text PDF