Rice is the second most produced crop worldwide, but is highly susceptible to drought. Micro-organisms can potentially alleviate the effects of drought. The aim of the present study was to unravel the genetic factors involved in the rice-microbe interaction, and whether genetics play a role in rice drought tolerance.
View Article and Find Full Text PDFPlants have evolved to deal with different stresses during plant growth, relying on complex interactions or crosstalk between multiple signalling pathways in plant cells. In this sophisticated regulatory network, Ca transients in the cytosol ([Ca ] ) act as major physiological signals to initiate appropriate responses. The CALCINEURIN B-LIKE PROTEIN (CBL)-CBL-INTERACTING PROTEIN KINASE (CIPK) network relays physiological signals characterised by [Ca ] transients during plant development and in response to environmental changes.
View Article and Find Full Text PDFUnder field conditions, plants are often exposed to more than one stress factor at the same time, and therefore need to adapt to different combinations of stresses. Crosstalk between responses to abiotic and biotic stresses is known to occur, and the interaction between stress responses can be positive or negative. We studied the interaction of drought stress and powdery mildew (PM) infection in tomatoes using near-isogenic tomato lines (NILs) carrying the , or gene that confers resistance to tomato PM caused by .
View Article and Find Full Text PDFMany tobacco () cultivars are salt-tolerant and thus are potential model plants to study the mechanisms of salt stress tolerance. The CALCINEURIN B-LIKE PROTEIN (CBL) is a vital family of plant calcium sensor proteins that can transmit Ca signals triggered by environmental stimuli including salt stress. Therefore, assessing the potential of for genetic improvement of salt stress is valuable.
View Article and Find Full Text PDFAmple nitrogen (N) is required for potato production, but its use efficiency is low. N supply strongly interacts with maturity type of the cultivar grown. We assessed whether variation among 189 cultivars grown with 75 or 185 kg available N/ha in 2 years would allow detecting quantitative trait loci (QTLs) for relevant traits.
View Article and Find Full Text PDFThe Plantarray 3.0 phenotyping platform was used to monitor the growth and water use of the quinoa varieties Pasto and selRiobamba under salinity (0-300 mM NaCl). Salinity reduced the cumulative transpiration of both varieties by 60% at 200 mM NaCl and by 75 and 82% at 300 mM NaCl for selRiobamba and Pasto, respectively.
View Article and Find Full Text PDFAdaptation of the xylem under dehydration to smaller sized vessels and the increase in xylem density per stem area facilitate water transport during water-limiting conditions, and this has implications for assimilate transport during drought. The potato stem is the communication and transport channel between the assimilate-exporting source leaves and the terminal sink tissues of the plant. During environmental stress conditions like water scarcity, which adversely affect the performance (canopy growth and tuber yield) of the potato plant, the response of stem tissues is essential, however, still understudied.
View Article and Find Full Text PDFDrought-stressed plants display reduced stomatal conductance, which results in increased leaf temperature by limiting transpiration. In this study, thermal imaging was used to quantify the differences in canopy temperature under drought in a rice diversity panel consisting of 293 indica accessions. The population was grown under paddy field conditions and drought stress was imposed for 2 weeks at flowering.
View Article and Find Full Text PDFPotato (Solanum tuberosum) is an important food crop consumed all over the world, but it is generally sensitive to drought conditions. One of the major physiological processes affected by drought stress is carbon partitioning: the plant's choice of where to allocate its photoassimilates. Our aim was to investigate the molecular factors and possible bottlenecks affecting carbon partitioning during drought.
View Article and Find Full Text PDFHigh affinity potassium transporters (HKT) are recognized as important genes for crop salt tolerance improvement. In this study, we investigated HvHKT1;5 as a candidate gene for a previously discovered quantitative trait locus that controls shoot Na and Na/K ratio in salt-stressed barley lines on a hydroponic system. Two major haplotype groups could be distinguished for this gene in a barley collection of 95 genotypes based on the presence of three intronic insertions; a designated haplotype group A (HGA, same as reference sequence) and haplotype group B (HGB, with insertions).
View Article and Find Full Text PDFWe explored the use of the eco-physiological crop model GECROS to identify markers for improved rice yield under well-watered (control) and water deficit conditions. Eight model parameters were measured from the control in one season for 267 indica genotypes. The model accounted for 58% of yield variation among genotypes under control and 40% under water deficit conditions.
View Article and Find Full Text PDFCrop plants are subjected to a variety of stresses during their lifecycle, including abiotic stress factors such as salinity and biotic stress factors such as pathogens. Plants have developed a multitude of defense and adaptation responses to these stress factors. In the field, different stress factors mostly occur concurrently resulting in a new state of stress, the combined stress.
View Article and Find Full Text PDFis a woody rhizomatous C4 grass that can be used as a CO neutral biofuel resource. It has potential to grow in marginal areas such as saline soils, avoiding competition for arable lands with food crops. This study explored genetic diversity for salt tolerance in and discovered mechanisms and traits that can be used to improve the yield under salt stress.
View Article and Find Full Text PDFThis paper describes the complete findings of the EU-funded research project OPTIMISC, which investigated methods to optimize the production and use of miscanthus biomass. Miscanthus bioenergy and bioproduct chains were investigated by trialing 15 diverse germplasm types in a range of climatic and soil environments across central Europe, Ukraine, Russia, and China. The abiotic stress tolerances of a wider panel of 100 germplasm types to drought, salinity, and low temperatures were measured in the laboratory and a field trial in Belgium.
View Article and Find Full Text PDFBackground: Within onion, Allium cepa L., the availability of disease resistance is limited. The identification of sources of resistance in related species, such as Allium roylei and Allium fistulosum, was a first step towards the improvement of onion cultivars by breeding.
View Article and Find Full Text PDFStress conditions in agricultural ecosystems can occur at variable intensities. Different resistance mechanisms against abiotic stress and pathogens are deployed by plants. Thus, it is important to examine plant responses to stress combinations under different scenarios.
View Article and Find Full Text PDFIn plants, tolerance to drought stress is a result of numerous minor effect loci in which transcriptional regulation contributes significantly to the observed phenotypes. Under severe drought conditions, a major expression quantitative trait loci hotspot was identified on chromosome five in potato. A putative Nuclear factor y subunit C4 was identified as key candidate in the regulatory cascade in response to drought.
View Article and Find Full Text PDFBreeding for stress-resilient crops strongly depends on technological and biological advancements that have provided a wealth of information on genetic variants and their contribution to stress tolerance. In the context of the upcoming challenges for agriculture due to climate change, such as prolonged and/or increased stress intensities, CO2 increase and stress combinations, hierarchizing this information is key to accelerating crop improvement towards sustained or even increased productivity. We propose traits with high scalability to yield and crop performance that can be targeted for improvement and provide examples of recent discoveries with potential applicability in breeding.
View Article and Find Full Text PDFPlants growing in their natural habitats are often challenged simultaneously by multiple stress factors, both abiotic and biotic. Research has so far been limited to responses to individual stresses, and understanding of adaptation to combinatorial stress is limited, but indicative of non-additive interactions. Omics data analysis and functional characterization of individual genes has revealed a convergence of signaling pathways for abiotic and biotic stress adaptation.
View Article and Find Full Text PDFBackground: Molecular profiling of gene families is a versatile tool to study diversity between individual genomes in sexual crosses and germplasm. Nucleotide binding site (NBS) profiling, in particular, targets conserved nucleotide binding site-encoding sequences of resistance gene analogs (RGAs), and is widely used to identify molecular markers for disease resistance (R) genes.
Results: In this study, we used NBS profiling to identify genome-wide locations of RGA clusters in the genome of potato clone RH.
A spring barley collection of 192 genotypes from a wide geographical range was used to identify quantitative trait loci (QTLs) for salt tolerance traits by means of an association mapping approach using a thousand SNP marker set. Linkage disequilibrium (LD) decay was found with marker distances spanning 2-8 cM depending on the methods used to account for population structure and genetic relatedness between genotypes. The association panel showed large variation for traits that were highly heritable under salt stress, including biomass production, chlorophyll content, plant height, tiller number, leaf senescence and shoot Na(+), shoot Cl(-) and shoot, root Na(+)/K(+) contents.
View Article and Find Full Text PDFPotato is the third most important staple food crop in terms of consumption, yet it is relatively susceptible to yield loss because of drought. As a first step towards improving drought tolerance in this crop, we set out to identify the genetic basis for drought tolerance in a diploid potato mapping population. Experiments were carried out under greenhouse conditions in two successive years by recording four physiological, seven growth and three yield parameters under stress and recovery treatments.
View Article and Find Full Text PDFBackground: With the completion of genome sequences belonging to some of the major crop plants, new challenges arise to utilize this data for crop improvement and increased food security. The field of genetical genomics has the potential to identify genes displaying heritable differential expression associated to important phenotypic traits. Here we describe the identification of expression QTLs (eQTLs) in two different potato tissues of a segregating potato population and query the potato genome sequence to differentiate between cis- and trans-acting eQTLs in relation to gene subfunctionalization.
View Article and Find Full Text PDFLike all plants, potato has evolved a surveillance system consisting of a large array of genes encoding for immune receptors that confer resistance to pathogens and pests. The majority of these so-called resistance or R proteins belong to the super-family that harbour a nucleotide binding and a leucine-rich-repeat domain (NB-LRR). Here, sequence information of the conserved NB domain was used to investigate the genome-wide genetic distribution of the NB-LRR resistance gene loci in potato.
View Article and Find Full Text PDF